EmaadKhwaja
commited on
Commit
•
cbeaab6
1
Parent(s):
3c77a96
formatting
Browse files
app.py
CHANGED
@@ -14,108 +14,131 @@ def gradio_demo(model_name, sequence_input, nucleus_image, protein_image):
|
|
14 |
hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="nucleus_vqgan.yaml")
|
15 |
hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="threshold_vqgan.yaml")
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
-
|
18 |
-
if
|
19 |
-
dataset =
|
20 |
|
21 |
else:
|
22 |
-
dataset =
|
23 |
-
|
24 |
-
nucleus_image = process_image(nucleus_image,dataset,
|
25 |
if protein_image:
|
26 |
-
protein_image = process_image(protein_image,dataset,
|
27 |
protein_image = protein_image > torch.median(protein_image)
|
28 |
-
protein_image = protein_image[0,0]
|
29 |
-
protein_image = protein_image*1.0
|
30 |
else:
|
31 |
-
protein_image = torch.ones((256,256))
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
40 |
# Plot the heatmap
|
41 |
-
plt.imshow(heatmap.cpu(), cmap=
|
42 |
-
plt.axis(
|
43 |
|
44 |
# Save the plot to a temporary file
|
45 |
-
plt.savefig(
|
46 |
|
47 |
# Open the temporary file as a PIL image
|
48 |
-
heatmap = Image.open(
|
49 |
-
|
50 |
-
return
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
53 |
with gr.Blocks() as demo:
|
54 |
gr.Markdown("Select the prediction model.")
|
55 |
-
gr.Markdown(
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
with gr.Row():
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
with gr.Row():
|
61 |
-
gr.
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
label = 'Sequence')
|
66 |
with gr.Row():
|
67 |
-
gr.Markdown(
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
with gr.Row().style(equal_height=True):
|
71 |
-
nucleus_image = gr.Image(
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
78 |
with gr.Row():
|
79 |
-
gr.Markdown("Image predictions are show below.")
|
80 |
-
|
81 |
-
with gr.Row().style(equal_height=True):
|
82 |
-
nucleus_image_crop = gr.Image(type=
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
predicted_heatmap = gr.Image(type='pil',
|
95 |
-
label = 'Predicted Heatmap')
|
96 |
with gr.Row():
|
97 |
button = gr.Button("Run Model")
|
98 |
-
|
99 |
-
inputs = [model_name,
|
100 |
-
sequence_input,
|
101 |
-
nucleus_image,
|
102 |
-
protein_image]
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
|
109 |
button.click(gradio_demo, inputs, outputs)
|
110 |
|
111 |
-
examples = [
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
# demo = gr.Interface(gradio_demo, inputs, outputs, examples, cache_examples=True, layout = layout)
|
121 |
demo.launch(share=True)
|
|
|
14 |
hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="nucleus_vqgan.yaml")
|
15 |
hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="threshold_vqgan.yaml")
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
|
18 |
+
if "Finetuned" in model_name:
|
19 |
+
dataset = "OpenCell"
|
20 |
|
21 |
else:
|
22 |
+
dataset = "HPA"
|
23 |
+
|
24 |
+
nucleus_image = process_image(nucleus_image, dataset, "nucleus")
|
25 |
if protein_image:
|
26 |
+
protein_image = process_image(protein_image, dataset, "protein")
|
27 |
protein_image = protein_image > torch.median(protein_image)
|
28 |
+
protein_image = protein_image[0, 0]
|
29 |
+
protein_image = protein_image * 1.0
|
30 |
else:
|
31 |
+
protein_image = torch.ones((256, 256))
|
32 |
+
|
33 |
+
threshold, heatmap = run_image_prediction(
|
34 |
+
sequence_input=sequence_input,
|
35 |
+
nucleus_image=nucleus_image,
|
36 |
+
model_ckpt_path=model,
|
37 |
+
model_config_path=config,
|
38 |
+
device=device,
|
39 |
+
)
|
40 |
+
|
41 |
# Plot the heatmap
|
42 |
+
plt.imshow(heatmap.cpu(), cmap="rainbow", interpolation="bicubic")
|
43 |
+
plt.axis("off")
|
44 |
|
45 |
# Save the plot to a temporary file
|
46 |
+
plt.savefig("temp.png", bbox_inches="tight", dpi=256)
|
47 |
|
48 |
# Open the temporary file as a PIL image
|
49 |
+
heatmap = Image.open("temp.png")
|
50 |
+
|
51 |
+
return (
|
52 |
+
T.ToPILImage()(nucleus_image[0, 0]),
|
53 |
+
T.ToPILImage()(protein_image),
|
54 |
+
T.ToPILImage()(threshold),
|
55 |
+
heatmap,
|
56 |
+
)
|
57 |
|
58 |
|
59 |
with gr.Blocks() as demo:
|
60 |
gr.Markdown("Select the prediction model.")
|
61 |
+
gr.Markdown(
|
62 |
+
"CELL-E_2_HPA_480 is a good general purpose model for various cell types using ICC-IF."
|
63 |
+
)
|
64 |
+
gr.Markdown(
|
65 |
+
"CELL-E_2_HPA_Finetuned_480 is finetuned on OpenCell and is good more live-cell predictions on HEK cells."
|
66 |
+
)
|
67 |
+
with gr.Row():
|
68 |
+
model_name = gr.Dropdown(
|
69 |
+
["CELL-E_2_HPA_480", "CELL-E_2_HPA_Finetuned_480"],
|
70 |
+
value="CELL-E_2_HPA_480",
|
71 |
+
label="Model Name",
|
72 |
+
)
|
73 |
with gr.Row():
|
74 |
+
gr.Markdown(
|
75 |
+
"Input the desired amino acid sequence. GFP is shown below by default."
|
76 |
+
)
|
77 |
+
|
78 |
with gr.Row():
|
79 |
+
sequence_input = gr.Textbox(
|
80 |
+
value="MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK",
|
81 |
+
label="Sequence",
|
82 |
+
)
|
|
|
83 |
with gr.Row():
|
84 |
+
gr.Markdown(
|
85 |
+
"Uploading a nucleus image is necessary. A random crop of 256 x 256 will be applied if larger."
|
86 |
+
)
|
87 |
+
gr.Markdown("The protein image is optional and is just used for display.")
|
88 |
+
|
89 |
with gr.Row().style(equal_height=True):
|
90 |
+
nucleus_image = gr.Image(
|
91 |
+
value="https://huggingface.co/spaces/HuangLab/CELL-E_2/resolve/main/images/Armadillo%20repeat-containing%20X-linked%20protein%205%20nucleus.jpg",
|
92 |
+
type="pil",
|
93 |
+
label="Nucleus Image",
|
94 |
+
image_mode="L",
|
95 |
+
)
|
96 |
+
|
97 |
+
protein_image = gr.Image(type="pil", label="Protein Image (Optional)")
|
98 |
+
|
99 |
with gr.Row():
|
100 |
+
gr.Markdown("Image predictions are show below.")
|
101 |
+
|
102 |
+
with gr.Row().style(equal_height=True):
|
103 |
+
nucleus_image_crop = gr.Image(type="pil", label="Nucleus Image", image_mode="L")
|
104 |
+
|
105 |
+
protein_threshold_image = gr.Image(
|
106 |
+
type="pil", label="Protein Threshold Image", image_mode="L"
|
107 |
+
)
|
108 |
+
|
109 |
+
predicted_threshold_image = gr.Image(
|
110 |
+
type="pil", label="Predicted Threshold image", image_mode="L"
|
111 |
+
)
|
112 |
+
|
113 |
+
predicted_heatmap = gr.Image(type="pil", label="Predicted Heatmap")
|
|
|
|
|
|
|
114 |
with gr.Row():
|
115 |
button = gr.Button("Run Model")
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
inputs = [model_name, sequence_input, nucleus_image, protein_image]
|
118 |
+
|
119 |
+
outputs = [
|
120 |
+
nucleus_image_crop,
|
121 |
+
protein_threshold_image,
|
122 |
+
predicted_threshold_image,
|
123 |
+
predicted_heatmap,
|
124 |
+
]
|
125 |
|
126 |
button.click(gradio_demo, inputs, outputs)
|
127 |
|
128 |
+
examples = [
|
129 |
+
[
|
130 |
+
"CELL-E_2_HPA_Finetuned_480",
|
131 |
+
"MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK",
|
132 |
+
"images/Proteasome activator complex subunit 3 nucleus.png",
|
133 |
+
"images/Proteasome activator complex subunit 3 protein.png",
|
134 |
+
],
|
135 |
+
[
|
136 |
+
"CELL-E_2_HPA_480",
|
137 |
+
"MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK",
|
138 |
+
"images/Armadillo repeat-containing X-linked protein 5 nucleus.jpg",
|
139 |
+
"images/Armadillo repeat-containing X-linked protein 5 protein.jpg",
|
140 |
+
],
|
141 |
+
]
|
142 |
|
143 |
# demo = gr.Interface(gradio_demo, inputs, outputs, examples, cache_examples=True, layout = layout)
|
144 |
demo.launch(share=True)
|