File size: 13,553 Bytes
4d1746c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from multi_turn_utils import (
    execute_multi_turn_func_call,
    is_empty_execute_response,
)

#### Main functions ####


def multi_turn_checker(
    multi_turn_model_result_list_decoded: list[list[list[str]]],
    multi_turn_ground_truth_list: list[list[str]],
    test_entry: dict,
    test_category: str,
    model_name: str,
) -> dict:
    """
    The main function that checks the correctness of the model's function call execution.
    """

    initial_config: dict = test_entry["initial_config"]
    involved_classes: list = test_entry["involved_classes"]
    test_entry_id: str = test_entry["id"]
    test_category: str = test_entry_id.rsplit("_", 1)[0]
    execution_results: list[dict] = []
    all_turn_model_execution_results: list[str] = []

    # First execute all the function calls
    for turn_index, single_turn_ground_truth_list in enumerate(
        multi_turn_ground_truth_list
    ):
        single_turn_model_response_list = multi_turn_model_result_list_decoded[turn_index]

        # Note that we combine all the sub-step results into a single list, for easier comparison
        single_turn_model_execution_results = []
        single_turn_model_execution_results_uncombined = []
        single_turn_ground_truth_execution_results = []
        model_instances = {}  # Will be overwritten in the for loop
        single_step_model_execution_results = []  # Will be overwritten in the for loop
    
        for single_step_model_response in single_turn_model_response_list:
            single_step_model_execution_results, model_instances = (
                execute_multi_turn_func_call(
                    func_call_list=single_step_model_response,
                    initial_config=initial_config,
                    involved_classes=involved_classes,
                    model_name=model_name,
                    test_entry_id=test_entry_id,
                    long_context=(
                        "long_context" in test_category or "composite" in test_category
                    ),
                    is_evaL_run=True,
                )
            )
            single_turn_model_execution_results.extend(single_step_model_execution_results)
            single_turn_model_execution_results_uncombined.append(single_step_model_execution_results)

        # Execute the ground truth function calls
        single_turn_ground_truth_execution_results, ground_truth_instances = (
            execute_multi_turn_func_call(
                func_call_list=single_turn_ground_truth_list,
                initial_config=initial_config,
                involved_classes=involved_classes,
                model_name=model_name + "_ground_truth",
                test_entry_id=test_entry_id,
                long_context=(
                    "long_context" in test_category or "composite" in test_category
                ),
                is_evaL_run=True,
            )
        )

        all_turn_model_execution_results.extend(single_turn_model_execution_results)
        execution_results.append(
            {
                "model": single_turn_model_execution_results_uncombined,
                "ground_truth": single_turn_ground_truth_execution_results,
            }
        )

        # If the ground truth list is not empty, then the model response list should not be empty
        if len(single_turn_ground_truth_list) > 0:
            if not single_turn_model_response_list or is_empty_execute_response(
                single_turn_model_response_list
            ):
                return {
                    "valid": False,
                    "error_message": f"Model response list is empty for turn {turn_index}",
                    "error_type": "multi_turn:empty_turn_model_response",
                    "details": {
                        "execution_result": execution_results,
                    },
                }

        # If the ground truth list is empty, this is the turn where the model should eventually fail to achieve the user request.
        # The actual check for irrelevance is done in the multi_turn_irrelevance_checker function
        # Note: If the model outputs any function call in this turn, we will still execute it so that the state check at the next turn is accurate.
        if not single_turn_ground_truth_list:
            continue

        ## Check after each turn ##
        assert len(model_instances) == len(
            ground_truth_instances
        ), f"Model instances and ground truth instances do not match in length for turn {turn_index}. Model instances: {len(model_instances)}, Ground truth instances: {len(ground_truth_instances)}"
        assert set(model_instances.keys()) == set(ground_truth_instances.keys())

        # Check the state of the instances
        state_check_result = state_checker(model_instances, ground_truth_instances)
        if not state_check_result["valid"]:
            state_check_result["execution_result"] = execution_results
            return state_check_result

        # Check the response of the function calls
        # We use the all_turn_model_execution_results to accomodate the situation where the model invokes a function in a previous turn, and thus don't need to invoke it again in the current turn.
        response_check_result = response_checker(
            all_turn_model_execution_results,
            single_turn_ground_truth_execution_results,
            turn_index,
        )
        if not response_check_result["valid"]:
            return response_check_result

        # # Check the method invoke order
        # method_invoke_order_check_result = method_invoke_order_checker(
        #     model_instances, ground_truth_instances
        # )
        # if not method_invoke_order_check_result["valid"]:
        #     return method_invoke_order_check_result

    return {"valid": True}


def multi_turn_irrelevance_checker(
    multi_turn_model_result_list_decoded: list[list[list[str]]],
    multi_turn_ground_truth_list: list[list[str]],
) -> dict:
    """
    Check if the model's output are irrelevant when it should be.
    It should be empty when the ground truth is a empty list for that turn.
    """
    for turn_index, single_turn_ground_truth_list in enumerate(
        multi_turn_ground_truth_list
    ):
        single_turn_model_response_list = multi_turn_model_result_list_decoded[turn_index]
        if len(single_turn_ground_truth_list) == 0:
            if is_empty_execute_response(single_turn_model_response_list):
                continue
            else:
                return {
                    "valid": False,
                    "error_message": f"Model outputs valid function calls when it should not for turn {turn_index}.",
                    "error_type": "multi_turn:irrelevance_error:decoder_success",
                    "details": {
                        "model response decoded": single_turn_model_response_list,
                    },
                }
    return {"valid": True}


#### Sub-Chekcers ####


def state_checker(model_instances: dict, ground_truth_instances: dict):
    """
    Checks if, after executing the function calls, the model_instance has the same state (defined by the attributes) as the ground_truth_instance.
    It checks if every instance in the model_instances has the same attributes as their corresponding instance (of the same class) from ground_truth_instances.
    """
    for class_name, ground_truth_instance in ground_truth_instances.items():
        model_instance = model_instances[class_name]
        valid, differences = _compare_instances(model_instance, ground_truth_instance)

        if not valid:
            model_instance_attributes = {
                key: value
                for key, value in vars(model_instance).items()
                if not key.startswith("_")
            }
            ground_truth_instance_attributes = {
                key: value
                for key, value in vars(ground_truth_instance).items()
                if not key.startswith("_")
            }
            # Format the error message for better readability
            return {
                "valid": False,
                "error_message": f"Model instance for {class_name} does not match the state with ground truth instance.",
                "error_type": "multi_turn:instance_state_mismatch",
                "details": {
                    "differences": differences,
                    "model_instance_state": model_instance_attributes,
                    "ground_truth_instance_state": ground_truth_instance_attributes,
                },
            }

    return {"valid": True}


def response_checker(
    model_response_list: list, ground_truth_response_list: list, turn_index: int
):
    """
    Checks if the model_response is a subsequence of the ground_truth_response.
    Each list contains the response of the function calls executed in that single turn.
    """
    # We don't need to enforce the order of the responses, because many entries have parallel operations, and so the model can execute them in any order.
    is_subsequence, missing_items = _is_subsequence_unordered(
        ground_truth_response_list, model_response_list
    )
    if not is_subsequence:
        return {
            "valid": False,
            "error_message": f"Model response execution results so far does not contain all the ground truth response execution results for turn {turn_index}.",
            "error_type": "multi_turn:execution_response_mismatch",
            "details": {
                "missing_items": missing_items,
                "model_response (including all previous turns)": model_response_list,
                "ground_truth_response (only the current turn)": ground_truth_response_list,
            },
        }

    return {"valid": True}


def method_invoke_order_checker(model_instances: dict, ground_truth_instances: dict):
    """
    Checks if the model_instance called the same order of methods as the ground_truth_instance.
    model_instance can call additional methods, but not skip any method that the ground_truth_instance called.

    Note: Currently, this functions only checks for the method names and not the arguments.
    """
    for class_name, ground_truth_instance in ground_truth_instances.items():
        model_instance = model_instances[class_name]

        # The get_method_called method is added by the LoggingMeta metaclass automatically
        model_invoke_order = model_instance.get_method_called()
        ground_truth_invoke_order = ground_truth_instance.get_method_called()

        # Extract the method names
        model_invoke_order = [method_call["method"] for method_call in model_invoke_order]
        ground_truth_invoke_order = [
            method_call["method"] for method_call in ground_truth_invoke_order
        ]

        is_subsequence, missing_items = _is_subsequence(
            ground_truth_invoke_order, model_invoke_order
        )
        if not is_subsequence:
            return {
                "valid": False,
                "error_message": f"Model instance for {class_name} does not match the method invoke order with ground truth instance. Missing items: {missing_items}",
                "error_type": "multi_turn:method_invoke_order_mismatch",
            }

    return {"valid": True}


#### Helper functions ####


def _compare_instances(model_obect, ground_truth_object):
    """
    Checks if the model_object has the same attributes as the ground_truth_object. They are instances of the same class.
    """
    assert type(model_obect) == type(
        ground_truth_object
    ), "Objects are not of the same type."
    differences = {}
    valid = True
    for attr_name in vars(ground_truth_object):
        # We don't check for private attributes
        if attr_name.startswith("_"):
            continue
        model_attr = getattr(model_obect, attr_name)
        ground_truth_attr = getattr(ground_truth_object, attr_name)

        if model_attr != ground_truth_attr:
            valid = False
            differences[attr_name] = {"model": model_attr, "ground_truth": ground_truth_attr}

    return valid, differences


def _is_subsequence(list1, list2) -> tuple[bool, list]:
    """
    Checks if list1 is a subsequence of list2, i.e., all elements of list1 are present in list2 in the same order.
    Also returns the elements of list1 that are not present in list2.
    """
    # Convert list2 to an iterator to ensure that the elements are consumed only once.
    iter_list2 = iter(list2)
    return all(item in iter_list2 for item in list1), [
        item for item in list1 if item not in list2
    ]


def _is_subsequence_unordered(list1, list2) -> tuple[bool, list]:
    """
    Checks if all elements of list1 are present in list2, regardless of order.
    Also returns the elements of list1 that are not present in list2.
    """
    # Copy list2 to avoid modifying the original list during checks
    list2_copy = list2[:]
    
    # Check each item in list1 to see if it exists in list2_copy
    missing_elements = []
    for item in list1:
        try:
            # Attempt to remove one occurrence of `item` from list2_copy to handle duplicates
            list2_copy.remove(item)
        except ValueError:
            # If item is not found, add it to missing_elements
            missing_elements.append(item)
    
    # If there are missing elements, list1 is not a subsequence of list2
    is_subsequence = len(missing_elements) == 0
    return is_subsequence, missing_elements