File size: 6,427 Bytes
f527676
 
 
5941875
f527676
 
 
 
 
 
c05fb53
 
 
f527676
c05fb53
5625528
 
 
 
 
 
 
c05fb53
5941875
b12b521
 
5941875
 
b12b521
5941875
b12b521
5941875
b12b521
 
 
f527676
 
 
 
 
 
5941875
f527676
 
 
 
 
 
 
 
 
 
5941875
 
 
4bde7da
5941875
 
 
b12b521
f527676
 
 
 
 
 
 
5941875
f527676
 
 
 
 
 
 
35a60a9
 
 
 
 
 
f527676
 
5941875
 
 
 
 
 
4bde7da
5941875
f527676
5941875
 
 
f527676
 
b12b521
 
5941875
 
f527676
 
 
 
 
 
 
 
35a60a9
f527676
4bde7da
872b774
 
5941875
872b774
5941875
872b774
 
 
 
 
 
f527676
35a60a9
f527676
 
 
 
 
 
 
 
 
 
 
 
 
 
b12b521
f527676
 
 
 
35a60a9
 
 
 
 
 
 
 
 
 
 
 
f527676
5625528
423d96b
 
f527676
 
 
 
 
 
423d96b
f527676
423d96b
f527676
 
 
 
 
 
 
8494d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f527676
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.

# %% auto 0
__all__ = ['HF_TOKEN', 'title', 'description', 'get_model_endpoint_params', 'query_chat_api', 'inference_chat']

# %% app.ipynb 0
import gradio as gr
import requests
import json
import requests
import os
from pathlib import Path
from dotenv import load_dotenv


# %% app.ipynb 1
if Path(".env").is_file():
    load_dotenv(".env")

HF_TOKEN = os.getenv("HF_TOKEN")


# %% app.ipynb 2
def get_model_endpoint_params(model_id):
    if "joi" in model_id:
        headers = None
        max_new_tokens_supported = True
        return "https://joi-20b.ngrok.io/generate", headers, max_new_tokens_supported
    else:
        max_new_tokens_supported = False
        headers = {"Authorization": f"Bearer {HF_TOKEN}", "x-wait-for-model": "1"}
        return f"https://api-inference.huggingface.co/models/{model_id}", headers, max_new_tokens_supported


# %% app.ipynb 3
def query_chat_api(
    model_id,
    inputs,
    temperature,
    top_p
):
    endpoint, headers, max_new_tokens_supported = get_model_endpoint_params(model_id)

    payload = {
        "inputs": inputs,
        "parameters": {
            "temperature": temperature,
            "top_p": top_p,
            "do_sample": True,
        },
    }

    if max_new_tokens_supported is True:
        payload["parameters"]["max_new_tokens"] = 100
        payload["parameters"]["repetition_penalty"]: 1.03
        # payload["parameters"]["stop"] = ["Human:"]
    else:
        payload["parameters"]["max_length"] = 512

    response = requests.post(endpoint, json=payload, headers=headers)

    if response.status_code == 200:
        return response.json()
    else:
        return "Error: " + response.text


# %% app.ipynb 5
def inference_chat(
    model_id,
    text_input,
    temperature,
    top_p,
    history=[],
):
    if "joi" in model_id:
        prompt_filename = "langchain_default.json"
    else:
        prompt_filename = "anthropic_hhh_single.json"
    print(prompt_filename)
    with open(f"prompt_templates/{prompt_filename}", "r") as f:
        prompt_template = json.load(f)

    history_input = ""
    for idx, text in enumerate(history):
        if idx % 2 == 0:
            history_input += f"Human: {text}\n"
        else:
            history_input += f"Assistant: {text}\n"
    history_input = history_input.rstrip("\n")
    inputs = prompt_template["prompt"].format(human_input=text_input, history=history_input)
    history.append(text_input)

    print(f"History: {history}")
    print(f"Inputs: {inputs}")

    output = query_chat_api(model_id, inputs, temperature, top_p)
    if isinstance(output, list):
        output = output[0]
    output = output["generated_text"].rstrip(" Human:")
    history.append(" " + output)

    chat = [
        (history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)
    ]  # convert to tuples of list

    return {chatbot: chat, state: history}


# %% app.ipynb 21
title = """<h1 align="center">Chatty Language Models</h1>"""
description = """Pretrained language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:

```
Human: <utterance>
Assistant: <utterance>
Human: <utterance>
Assistant: <utterance>
...
```

In this app, you can explore the outputs of several language models conditioned on different conversational prompts. The models are trained on different datasets and have different objectives, so they will have different personalities and strengths.
"""

# %% app.ipynb 23
with gr.Blocks(
    css="""
    .message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
    #component-21 > div.wrap.svelte-w6rprc {height: 600px;}
    """
) as iface:
    state = gr.State([])

    gr.Markdown(title)
    gr.Markdown(description)

    with gr.Row():
        with gr.Column(scale=1):
            model_id = gr.Dropdown(
                choices=["google/flan-t5-xl" ,"Rallio67/joi_20B_instruct_alpha"],
                value="google/flan-t5-xl",
                label="Model",
                interactive=True,
            )
            # prompt_template = gr.Dropdown(
            #     choices=[
            #         "langchain_default",
            #         "openai_chatgpt",
            #         "deepmind_sparrow",
            #         "deepmind_gopher",
            #         "anthropic_hhh",
            #     ],
            #     value="langchain_default",
            #     label="Prompt Template",
            #     interactive=True,
            # )
            temperature = gr.Slider(
                minimum=0.0,
                maximum=2.0,
                value=1.0,
                step=0.1,
                interactive=True,
                label="Temperature",
            )

            top_p = gr.Slider(
                minimum=0.,
                maximum=1.0,
                value=0.8,
                step=0.05,
                interactive=True,
                label="Top-p (nucleus sampling)",
            )

        with gr.Column(scale=1.8):
            with gr.Row():
                chatbot = gr.Chatbot(
                    label="Chat Output",
                )

            with gr.Row():
                chat_input = gr.Textbox(lines=1, label="Chat Input")
                chat_input.submit(
                    inference_chat,
                    [
                        model_id,
                        chat_input,
                        temperature,
                        top_p,
                        state,
                    ],
                    [chatbot, state],
                )

            with gr.Row():
                clear_button = gr.Button(value="Clear", interactive=True)
                clear_button.click(
                    lambda: ("", [], []),
                    [],
                    [chat_input, chatbot, state],
                    queue=False,
                )

                submit_button = gr.Button(
                    value="Submit", interactive=True, variant="primary"
                )
                submit_button.click(
                    inference_chat,
                    [
                        model_id,
                        chat_input,
                        temperature,
                        top_p,
                        state,
                    ],
                    [chatbot, state],
                )
iface.launch()