Spaces:
Runtime error
Runtime error
File size: 6,427 Bytes
f527676 5941875 f527676 c05fb53 f527676 c05fb53 5625528 c05fb53 5941875 b12b521 5941875 b12b521 5941875 b12b521 5941875 b12b521 f527676 5941875 f527676 5941875 4bde7da 5941875 b12b521 f527676 5941875 f527676 35a60a9 f527676 5941875 4bde7da 5941875 f527676 5941875 f527676 b12b521 5941875 f527676 35a60a9 f527676 4bde7da 872b774 5941875 872b774 5941875 872b774 f527676 35a60a9 f527676 b12b521 f527676 35a60a9 f527676 5625528 423d96b f527676 423d96b f527676 423d96b f527676 8494d2c f527676 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
# %% auto 0
__all__ = ['HF_TOKEN', 'title', 'description', 'get_model_endpoint_params', 'query_chat_api', 'inference_chat']
# %% app.ipynb 0
import gradio as gr
import requests
import json
import requests
import os
from pathlib import Path
from dotenv import load_dotenv
# %% app.ipynb 1
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
# %% app.ipynb 2
def get_model_endpoint_params(model_id):
if "joi" in model_id:
headers = None
max_new_tokens_supported = True
return "https://joi-20b.ngrok.io/generate", headers, max_new_tokens_supported
else:
max_new_tokens_supported = False
headers = {"Authorization": f"Bearer {HF_TOKEN}", "x-wait-for-model": "1"}
return f"https://api-inference.huggingface.co/models/{model_id}", headers, max_new_tokens_supported
# %% app.ipynb 3
def query_chat_api(
model_id,
inputs,
temperature,
top_p
):
endpoint, headers, max_new_tokens_supported = get_model_endpoint_params(model_id)
payload = {
"inputs": inputs,
"parameters": {
"temperature": temperature,
"top_p": top_p,
"do_sample": True,
},
}
if max_new_tokens_supported is True:
payload["parameters"]["max_new_tokens"] = 100
payload["parameters"]["repetition_penalty"]: 1.03
# payload["parameters"]["stop"] = ["Human:"]
else:
payload["parameters"]["max_length"] = 512
response = requests.post(endpoint, json=payload, headers=headers)
if response.status_code == 200:
return response.json()
else:
return "Error: " + response.text
# %% app.ipynb 5
def inference_chat(
model_id,
text_input,
temperature,
top_p,
history=[],
):
if "joi" in model_id:
prompt_filename = "langchain_default.json"
else:
prompt_filename = "anthropic_hhh_single.json"
print(prompt_filename)
with open(f"prompt_templates/{prompt_filename}", "r") as f:
prompt_template = json.load(f)
history_input = ""
for idx, text in enumerate(history):
if idx % 2 == 0:
history_input += f"Human: {text}\n"
else:
history_input += f"Assistant: {text}\n"
history_input = history_input.rstrip("\n")
inputs = prompt_template["prompt"].format(human_input=text_input, history=history_input)
history.append(text_input)
print(f"History: {history}")
print(f"Inputs: {inputs}")
output = query_chat_api(model_id, inputs, temperature, top_p)
if isinstance(output, list):
output = output[0]
output = output["generated_text"].rstrip(" Human:")
history.append(" " + output)
chat = [
(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)
] # convert to tuples of list
return {chatbot: chat, state: history}
# %% app.ipynb 21
title = """<h1 align="center">Chatty Language Models</h1>"""
description = """Pretrained language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
Human: <utterance>
Assistant: <utterance>
Human: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of several language models conditioned on different conversational prompts. The models are trained on different datasets and have different objectives, so they will have different personalities and strengths.
"""
# %% app.ipynb 23
with gr.Blocks(
css="""
.message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
#component-21 > div.wrap.svelte-w6rprc {height: 600px;}
"""
) as iface:
state = gr.State([])
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
model_id = gr.Dropdown(
choices=["google/flan-t5-xl" ,"Rallio67/joi_20B_instruct_alpha"],
value="google/flan-t5-xl",
label="Model",
interactive=True,
)
# prompt_template = gr.Dropdown(
# choices=[
# "langchain_default",
# "openai_chatgpt",
# "deepmind_sparrow",
# "deepmind_gopher",
# "anthropic_hhh",
# ],
# value="langchain_default",
# label="Prompt Template",
# interactive=True,
# )
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.,
maximum=1.0,
value=0.8,
step=0.05,
interactive=True,
label="Top-p (nucleus sampling)",
)
with gr.Column(scale=1.8):
with gr.Row():
chatbot = gr.Chatbot(
label="Chat Output",
)
with gr.Row():
chat_input = gr.Textbox(lines=1, label="Chat Input")
chat_input.submit(
inference_chat,
[
model_id,
chat_input,
temperature,
top_p,
state,
],
[chatbot, state],
)
with gr.Row():
clear_button = gr.Button(value="Clear", interactive=True)
clear_button.click(
lambda: ("", [], []),
[],
[chat_input, chatbot, state],
queue=False,
)
submit_button = gr.Button(
value="Submit", interactive=True, variant="primary"
)
submit_button.click(
inference_chat,
[
model_id,
chat_input,
temperature,
top_p,
state,
],
[chatbot, state],
)
iface.launch()
|