Spaces:
Running
on
A10G
Running
on
A10G
import gradio as gr | |
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig | |
import torch | |
model_id = "HuggingFaceM4/idefics2-8b" | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.float16 | |
) | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype=torch.float16, quantization_config=quantization_config) | |
def respond(multimodal_input): | |
images = multimodal_input["files"] | |
content = [{"type": "image"} for _ in images] | |
content.append({"type": "text", "text": multimodal_input["text"]}) | |
messages = [{"role": "user", "content": content}] | |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[images], return_tensors="pt") | |
inputs = {k: v.to(model.device) for k, v in inputs.items()} | |
num_tokens = len(inputs["input_ids"][0]) | |
with torch.inference_mode(): | |
generated_ids = model.generate(**inputs, max_new_tokens=500) | |
new_tokens = generated_ids[:, num_tokens:] | |
generated_text = processor.batch_decode(new_tokens, skip_special_tokens=True)[0] | |
return generated_text | |
gr.Interface( | |
respond, | |
inputs=[gr.MultimodalTextbox(file_types=["image"], show_label=False)], | |
outputs="text", | |
title="IDEFICS2-8B DPO", | |
description="Try IDEFICS2-8B fine-tuned using direct preference optimization (DPO) in this demo. Learn more about vision language model DPO integration of TRL [here](https://huggingface.co/blog/dpo_vlm).", | |
examples=[ | |
{"text": "What is the type of flower in the image and what insect is on it?", "files": ["./bee.jpg"]}, | |
{"text": "Describe the image", "files": ["./howl.jpg"]}, | |
], | |
).launch() | |