File size: 2,323 Bytes
f04732f
1f70fa4
f04732f
 
 
 
 
 
9354102
d433054
 
 
f04732f
e9f7265
 
1f70fa4
f04732f
1f70fa4
f04732f
 
 
 
 
 
 
 
 
 
 
 
 
340a6dd
 
 
0fab3cb
f04732f
 
 
 
722a464
f04732f
 
 
 
 
bbb29c3
f04732f
 
 
 
 
 
 
 
 
 
 
 
9354102
f04732f
3c7aec5
f04732f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from threading import Thread
import re
import time 
from PIL import Image
import torch
import spaces
import os
from huggingface_hub import login

login(token=os.environ["HF_TOKEN"])

MODEL_ID = os.environ["MODEL_ID"]
REVISION = os.environ["MODEL_REVISION"]
processor = LlavaProcessor.from_pretrained(MODEL_ID, revision=REVISION)

model = LlavaForConditionalGeneration.from_pretrained(MODEL_ID, revision=REVISION, torch_dtype=torch.float16, low_cpu_mem_usage=True)
model.to("cuda:0")

@spaces.GPU
def bot_streaming(message, history):
  print(message)
  if message["files"]:
    image = message["files"][-1]["path"]
  else:
    # if there's no image uploaded for this turn, look for images in the past turns
    # kept inside tuples, take the last one
    for hist in history:
      if type(hist[0])==tuple:
        image = hist[0][0]

  if image is None:
      gr.Error("You need to upload an image for LLaVA to work.")
  prompt=f"USER: <image>\n{message['text']}\nASSISTANT:" #f"[INST] <image>\n{message['text']} [/INST]"
  image = Image.open(image).convert("RGB")
  inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")

  streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
  generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=100)
  generated_text = ""

  thread = Thread(target=model.generate, kwargs=generation_kwargs)
  thread.start()

  text_prompt =f"USER:  \n{message['text']}\nASSISTANT: " #f"[INST]  \n{message['text']} [/INST]"
  

  buffer = ""
  for new_text in streamer:
    
    buffer += new_text
    
    generated_text_without_prompt = buffer[len(text_prompt):]
    time.sleep(0.04)
    yield generated_text_without_prompt


demo = gr.ChatInterface(fn=bot_streaming, title="VLM Playground", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]},
                                                                      {"text": "How to make this pastry?", "files":["./baklava.png"]}], 
                        description="Playground for internal VLMs. Change the model ID and revision under the environments of the Space settings.",
                        stop_btn="Stop Generation", multimodal=True)
demo.launch(debug=True)