import gradio as gr from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer from threading import Thread import re import time from PIL import Image import torch import spaces import os from huggingface_hub import login login(token=os.environ["HF_TOKEN"]) MODEL_ID = os.environ["MODEL_ID"] REVISION = os.environ["MODEL_REVISION"] processor = LlavaProcessor.from_pretrained(MODEL_ID, revision=REVISION) model = LlavaForConditionalGeneration.from_pretrained(MODEL_ID, revision=REVISION, torch_dtype=torch.float16, low_cpu_mem_usage=True) model.to("cuda:0") @spaces.GPU def bot_streaming(message, history): print(message) if message["files"]: image = message["files"][-1]["path"] else: # if there's no image uploaded for this turn, look for images in the past turns # kept inside tuples, take the last one for hist in history: if type(hist[0])==tuple: image = hist[0][0] if image is None: gr.Error("You need to upload an image for LLaVA to work.") prompt=f"USER: \n{message['text']}\nASSISTANT:" #f"[INST] \n{message['text']} [/INST]" image = Image.open(image).convert("RGB") inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True}) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=100) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() text_prompt =f"USER: \n{message['text']}\nASSISTANT: " #f"[INST] \n{message['text']} [/INST]" buffer = "" for new_text in streamer: buffer += new_text generated_text_without_prompt = buffer[len(text_prompt):] time.sleep(0.04) yield generated_text_without_prompt demo = gr.ChatInterface(fn=bot_streaming, title="VLM Playground", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]}, {"text": "How to make this pastry?", "files":["./baklava.png"]}], description="Playground for internal VLMs. Change the model ID and revision under the environments of the Space settings.", stop_btn="Stop Generation", multimodal=True) demo.launch(debug=True)