Spaces:
Runtime error
Runtime error
File size: 9,221 Bytes
46df0b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Change print statements to logging?
# from evaluate import logging as logs
import warnings
import datasets
import evaluate
import numpy as np
import pandas as pd
from sklearn.preprocessing import MultiLabelBinarizer
_CITATION = """\
Osman Aka, Ken Burke, Alex Bauerle, Christina Greer, and Margaret Mitchell. \
2021. Measuring Model Biases in the Absence of Ground Truth. \
In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society \
(AIES '21). Association for Computing Machinery, New York, NY, USA, 327–335. \
https://doi.org/10.1145/3461702.3462557
"""
_DESCRIPTION = """\
Normalized Pointwise Information (nPMI) is an entropy-based measurement
of association, used here to measure the association between words.
"""
_KWARGS_DESCRIPTION = """\
Args:
references (list of lists): List of tokenized sentences.
vocab_counts (dict or dataframe): Vocab terms and their counts
Returns:
npmi_df: A dataframe with (1) nPMI association scores for each term; \
(2) the difference between them.
"""
# TODO: Is this necessary?
warnings.filterwarnings(action="ignore", category=UserWarning)
# When we divide by 0 in log
np.seterr(divide="ignore")
# treating inf values as NaN as well
pd.set_option("use_inf_as_na", True)
# This can be changed to whatever a person likes;
# it is the number of batches to use when iterating through the vocabulary.
_NUM_BATCHES = 500
PROP = "proportion"
CNT = "count"
class nPMI(evaluate.Measurement):
def _info(self):
return evaluate.MeasurementInfo(
module_type="measurement",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"references": datasets.Sequence(
datasets.Value("string", id="sequence"),
id="references"),
}
)
# TODO: Create docs for this.
# reference_urls=["https://huggingface.co/docs/..."],
)
def _compute(self, references, vocab_counts, subgroup):
if isinstance(vocab_counts, dict):
vocab_counts_df = pd.DataFrame.from_dict(vocab_counts,
orient='index',
columns=[CNT])
elif isinstance(vocab_counts, pd.DataFrame):
vocab_counts_df = vocab_counts
else:
print("Can't support the data structure for the vocab counts. =(")
return
# These are used throughout the rest of the functions
self.references = references
self.vocab_counts_df = vocab_counts_df
self.vocab_counts_df[PROP] = vocab_counts_df[CNT] / sum(
vocab_counts_df[CNT])
# self.mlb_list holds num batches x num_sentences
self.mlb_list = []
# Index of the subgroup word in the sparse vector
subgroup_idx = vocab_counts_df.index.get_loc(subgroup)
print("Calculating co-occurrences...")
df_coo = self.calc_cooccurrences(subgroup, subgroup_idx)
vocab_cooc_df = self.set_idx_cols(df_coo, subgroup)
print("Calculating PMI...")
pmi_df = self.calc_PMI(vocab_cooc_df, subgroup)
print("Calculating nPMI...")
npmi_df = self.calc_nPMI(pmi_df, vocab_cooc_df, subgroup)
npmi_bias = npmi_df.max(axis=0) + abs(npmi_df.min(axis=0))
return {"bias": npmi_bias, "co-occurrences": vocab_cooc_df,
"pmi": pmi_df, "npmi": npmi_df}
def _binarize_words_in_sentence(self):
print("Creating co-occurrence matrix for PMI calculations.")
batches = np.linspace(0, len(self.references), _NUM_BATCHES).astype(int)
i = 0
# Creates list of size (# batches x # sentences)
while i < len(batches) - 1:
# Makes a sparse matrix (shape: # sentences x # words),
# with the occurrence of each word per sentence.
mlb = MultiLabelBinarizer(classes=self.vocab_counts_df.index)
print(
"%s of %s sentence binarize batches." % (
str(i), str(len(batches)))
)
# Returns series: batch size x num_words
mlb_series = mlb.fit_transform(
self.references[batches[i]:batches[i + 1]]
)
i += 1
self.mlb_list.append(mlb_series)
def calc_cooccurrences(self, subgroup, subgroup_idx):
initialize = True
coo_df = None
# Big computation here! Should only happen once.
print(
"Approaching big computation! Here, we binarize all words in the sentences, making a sparse matrix of sentences."
)
if not self.mlb_list:
self._binarize_words_in_sentence()
for batch_id in range(len(self.mlb_list)):
print(
"%s of %s co-occurrence count batches"
% (str(batch_id), str(len(self.mlb_list)))
)
# List of all the sentences (list of vocab) in that batch
batch_sentence_row = self.mlb_list[batch_id]
# Dataframe of # sentences in batch x vocabulary size
sent_batch_df = pd.DataFrame(batch_sentence_row)
# Subgroup counts per-sentence for the given batch
subgroup_df = sent_batch_df[subgroup_idx]
subgroup_df.columns = [subgroup]
# Remove the sentences where the count of the subgroup is 0.
# This way we have less computation & resources needs.
subgroup_df = subgroup_df[subgroup_df > 0]
mlb_subgroup_only = sent_batch_df[sent_batch_df[subgroup_idx] > 0]
# Create cooccurrence matrix for the given subgroup and all words.
batch_coo_df = pd.DataFrame(mlb_subgroup_only.T.dot(subgroup_df))
# Creates a batch-sized dataframe of co-occurrence counts.
# Note these could just be summed rather than be batch size.
if initialize:
coo_df = batch_coo_df
else:
coo_df = coo_df.add(batch_coo_df, fill_value=0)
initialize = False
print("Returning co-occurrence matrix")
return pd.DataFrame(coo_df)
def set_idx_cols(self, df_coo, subgroup):
"""
:param df_coo: Co-occurrence counts for subgroup, length is num_words
:return:
"""
count_df = df_coo.set_index(self.vocab_counts_df.index)
count_df.columns = [subgroup + "-count"]
count_df[subgroup + "-count"] = count_df[subgroup + "-count"].astype(
int)
return count_df
def calc_PMI(self, vocab_cooc_df, subgroup):
"""
# PMI(x;y) = h(y) - h(y|x)
# = h(subgroup) - h(subgroup|word)
# = log (p(subgroup|word) / p(subgroup))
# nPMI additionally divides by -log(p(x,y)) = -log(p(x|y)p(y))
"""
# Calculation of p(subgroup)
# TODO: Is this better?
# subgroup_prob = vocab_counts_df.loc[subgroup][PROP]
subgroup_prob = self.vocab_counts_df.loc[subgroup][CNT] / sum(
self.vocab_counts_df[CNT])
# Calculation of p(subgroup|word) = count(subgroup,word) / count(word)
# Because the indices match (the vocab words),
# this division doesn't need to specify the index (I think?!)
p_subgroup_g_word = (
vocab_cooc_df[subgroup + "-count"] / self.vocab_counts_df[
CNT]
)
pmi_df = pd.DataFrame()
pmi_df[subgroup + "-pmi"] = np.log(p_subgroup_g_word / subgroup_prob)
# Note: A potentially faster solution for adding count, npmi,
# can be based on this zip idea:
# df_test['size_kb'], df_test['size_mb'], df_test['size_gb'] =
# zip(*df_test['size'].apply(sizes))
return pmi_df.dropna()
def calc_nPMI(self, pmi_df, vocab_cooc_df, subgroup):
"""
# nPMI additionally divides by -log(p(x,y)) = -log(p(x|y)p(y))
# = -log(p(word|subgroup)p(word))
"""
p_word_g_subgroup = vocab_cooc_df[subgroup + "-count"] / sum(
vocab_cooc_df[subgroup + "-count"]
)
p_word = pmi_df.apply(
lambda x: self.vocab_counts_df.loc[x.name][PROP], axis=1
)
normalize_pmi = -np.log(p_word_g_subgroup * p_word)
npmi_df = pd.DataFrame()
npmi_df[subgroup + "-npmi"] = pmi_df[subgroup + "-pmi"] / normalize_pmi
return npmi_df.dropna()
|