Ezi's picture
Upload 312 files
46df0b6
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pandas as pd
import sys
import utils
import utils.dataset_utils as ds_utils
import warnings
from collections import defaultdict
from os.path import exists
from os.path import join as pjoin
from sklearn.preprocessing import MultiLabelBinarizer
from utils.dataset_utils import (CNT, TOKENIZED_FIELD)
# Might be nice to print to log instead? Happens when we drop closed class.
warnings.filterwarnings(action="ignore", category=UserWarning)
# When we divide by 0 in log
np.seterr(divide="ignore")
# treating inf values as NaN as well
pd.set_option("use_inf_as_na", True)
logs = utils.prepare_logging(__file__)
# TODO: Should be possible for a user to specify this.
NUM_BATCHES = 500
# For the associations of an identity term
SING = "associations"
# For the difference between the associations of identity terms
DIFF = "biases"
# Used in the figures we show in DMT
DMT = "combined"
def pair_terms(id_terms):
"""Creates alphabetically ordered paired terms based on the given terms."""
pairs = []
for i in range(len(id_terms)):
term1 = id_terms[i]
for j in range(i + 1, len(id_terms)):
term2 = id_terms[j]
# Use one ordering for a pair.
pair = tuple(sorted([term1, term2]))
pairs += [pair]
return pairs
class DMTHelper:
"""Helper class for the Data Measurements Tool.
This allows us to keep all variables and functions related to labels
in one file.
"""
def __init__(self, dstats, identity_terms, load_only=False, use_cache=False,
save=True):
# The data measurements tool settings (dataset, config, etc.)
self.dstats = dstats
# Whether we can use caching (when live, no).
self.load_only = load_only
# Whether to first try using cache before calculating
self.use_cache = use_cache
# Whether to save results
self.save = save
# Tokenized dataset
tokenized_df = dstats.tokenized_df
self.tokenized_sentence_df = tokenized_df[TOKENIZED_FIELD]
# Dataframe of shape #vocab x 1 (count)
self.vocab_counts_df = dstats.vocab_counts_df
# Cutoff for the number of times something must occur to be included
self.min_count = dstats.min_vocab_count
self.cache_path = pjoin(dstats.dataset_cache_dir, SING)
self.avail_terms_json_fid = pjoin(self.cache_path,
"identity_terms.json")
# TODO: Users ideally can type in whatever words they want.
# This is the full list of terms.
self.identity_terms = identity_terms
logs.info("Using term list:")
logs.info(self.identity_terms)
# identity_terms terms that are available more than MIN_VOCAB_COUNT
self.avail_identity_terms = []
# TODO: Let users specify
self.open_class_only = True
# Single-word associations
self.assoc_results_dict = defaultdict(dict)
# Paired term association bias
self.bias_results_dict = defaultdict(dict)
# Dataframes used in displays.
self.bias_dfs_dict = defaultdict(dict)
# Results of the single word associations and their paired bias values.
# Formatted as:
# {(s1,s2)): {pd.DataFrame({s1-s2:diffs, s1:assoc, s2:assoc})}}
self.results_dict = defaultdict(lambda: defaultdict(dict))
# Filenames for cache, based on the results
self.filenames_dict = defaultdict(dict)
def run_DMT_processing(self):
# The identity terms that can be used
self.load_or_prepare_avail_identity_terms()
# Association measurements & pair-wise differences for identity terms.
self.load_or_prepare_dmt_results()
def load_or_prepare_avail_identity_terms(self):
"""
Figures out what identity terms the user can select, based on whether
they occur more than self.min_vocab_count times
Provides identity terms -- uniquely and in pairs -- occurring at least
self.min_vocab_count times.
"""
# If we're trying to use the cache of available terms
if self.use_cache:
self.avail_identity_terms = self._load_identity_cache()
if self.avail_identity_terms:
logs.info(
"Loaded identity terms occuring >%s times" % self.min_count)
# Figure out the identity terms if we're not just loading from cache
if not self.load_only:
if not self.avail_identity_terms:
self.avail_identity_terms = self._prepare_identity_terms()
# Finish
if self.save:
self._write_term_cache()
def _load_identity_cache(self):
if exists(self.avail_terms_json_fid):
avail_identity_terms = ds_utils.read_json(self.avail_terms_json_fid)
return avail_identity_terms
return []
def _prepare_identity_terms(self):
"""Uses DataFrame magic to return those terms that appear
greater than min_vocab times."""
# Mask to get the identity terms
true_false = [term in self.vocab_counts_df.index for term in
self.identity_terms]
# List of identity terms
word_list_tmp = [x for x, y in zip(self.identity_terms, true_false) if
y]
# Whether said identity terms have a count > min_count
true_false_counts = [
self.vocab_counts_df.loc[word, CNT] >= self.min_count for word in
word_list_tmp]
# List of identity terms with a count higher than min_count
avail_identity_terms = [word for word, y in
zip(word_list_tmp, true_false_counts) if y]
logs.debug("Identity terms that occur > %s times are:" % self.min_count)
logs.debug(avail_identity_terms)
return avail_identity_terms
def load_or_prepare_dmt_results(self):
# Initialize with no results (reset).
self.results_dict = {}
# Filenames for caching and saving
self._make_fids()
# If we're trying to use the cache of already computed results
if self.use_cache:
# Loads the association results and dataframes used in the display.
logs.debug("Trying to load...")
self.results_dict = self._load_dmt_cache()
# Compute results if we can
if not self.load_only:
# If there isn't a solution using cache
if not self.results_dict:
# Does the actual computations
self.prepare_results()
# Finish
if self.save:
# Writes the paired & singleton dataframe out.
self._write_dmt_cache()
def _load_dmt_cache(self):
"""
Loads dataframe with paired differences and individual item scores.
"""
results_dict = defaultdict(lambda: defaultdict(dict))
pairs = pair_terms(self.avail_identity_terms)
for pair in pairs:
combined_fid = self.filenames_dict[DMT][pair]
if exists(combined_fid):
results_dict[pair] = ds_utils.read_df(combined_fid)
return results_dict
def prepare_results(self):
assoc_obj = nPMI(self.dstats.vocab_counts_df,
self.tokenized_sentence_df,
self.avail_identity_terms)
self.assoc_results_dict = assoc_obj.assoc_results_dict
self.results_dict = assoc_obj.bias_results_dict
def _prepare_dmt_dfs(self, measure="npmi"):
"""
Create the main dataframe that is used in the DMT, which lists
the npmi scores for each paired identity term and the difference between
them. The difference between them is the "bias".
"""
# Paired identity terms, associations and differences, in one dataframe.
bias_dfs_dict = defaultdict(dict)
logs.debug("bias results dict is")
logs.debug(self.bias_results_dict)
for pair in sorted(self.bias_results_dict):
combined_df = pd.DataFrame()
# Paired identity terms, values are the the difference between them.
combined_df[pair] = pd.DataFrame(self.bias_results_dict[pair])
s1 = pair[0]
s2 = pair[1]
# Single identity term 1, values
combined_df[s1] = pd.DataFrame(self.assoc_results_dict[s1][measure])
# Single identity term 2, values
combined_df[s2] = pd.DataFrame(self.assoc_results_dict[s2][measure])
# Full dataframe with scores per-term,
# as well as the difference between.
bias_dfs_dict[pair] = combined_df
# {pair: {pd.DataFrame({(s1,s2)):diffs, s1:assocs, s2:assocs})}}
logs.debug("combined df is")
logs.debug(bias_dfs_dict)
return bias_dfs_dict
def _write_term_cache(self):
ds_utils.make_path(self.cache_path)
if self.avail_identity_terms:
ds_utils.write_json(self.avail_identity_terms,
self.avail_terms_json_fid)
def _write_dmt_cache(self, measure="npmi"):
ds_utils.make_path(pjoin(self.cache_path, measure))
for pair, bias_df in self.results_dict.items():
logs.debug("Results for pair is:")
logs.debug(bias_df)
fid = self.filenames_dict[DMT][pair]
logs.debug("Writing to %s" % fid)
ds_utils.write_df(bias_df, fid)
def _make_fids(self, measure="npmi"):
"""
Utility function to create filename/path strings for the different
result caches. This include single identity term results as well
as the difference between them. Also includes the datastructure used in
the DMT, which is a dataframe that has:
(term1, term2) difference, term1 (scores), term2 (scores)
"""
self.filenames_dict = {SING: {}, DIFF: {}, DMT: {}}
# When we have the available identity terms,
# we can make cache filenames for them.
for id_term in self.avail_identity_terms:
filename = SING + "-" + id_term + ".json"
json_fid = pjoin(self.cache_path, measure, filename)
self.filenames_dict[SING][id_term] = json_fid
paired_terms = pair_terms(self.avail_identity_terms)
for id_term_tuple in paired_terms:
# The paired association results (bias) are stored with these files.
id_term_str = '-'.join(id_term_tuple)
filename = DIFF + "-" + id_term_str + ".json"
json_fid = pjoin(self.cache_path, measure, filename)
self.filenames_dict[DIFF][id_term_tuple] = json_fid
# The display dataframes in the DMT are stored with these files.
filename = DMT + "-" + id_term_str + ".json"
json_fid = pjoin(self.cache_path, measure, filename)
self.filenames_dict[DMT][id_term_tuple] = json_fid
def get_display(self, s1, s2):
pair = tuple(sorted([s1, s2]))
display_df = self.results_dict[pair]
logs.debug(self.results_dict)
display_df.columns = ["bias", s1, s2]
return display_df
def get_filenames(self):
filenames = {"available terms": self.avail_terms_json_fid,
"results": self.filenames_dict}
return filenames
class nPMI:
"""
Uses the vocabulary dataframe and tokenized sentences to calculate
co-occurrence statistics, PMI, and nPMI
"""
def __init__(self, vocab_counts_df, tokenized_sentence_df, given_id_terms):
logs.debug("Initiating assoc class.")
self.vocab_counts_df = vocab_counts_df
# TODO: Change this logic so just the vocabulary is given.
self.vocabulary = list(vocab_counts_df.index)
self.vocab_counts = pd.DataFrame([0] * len(self.vocabulary))
logs.debug("vocabulary is is")
logs.debug(self.vocab_counts_df)
self.tokenized_sentence_df = tokenized_sentence_df
logs.debug("tokenized sentences are")
logs.debug(self.tokenized_sentence_df)
self.given_id_terms = given_id_terms
logs.info("identity terms are")
logs.info(self.given_id_terms)
# Terms we calculate the difference between
self.paired_terms = pair_terms(given_id_terms)
# Matrix of # sentences x vocabulary size
self.word_cnts_per_sentence = self.count_words_per_sentence()
logs.info("Calculating results...")
# Formatted as {subgroup:{"count":{...},"npmi":{...}}}
self.assoc_results_dict = self.calc_measures()
# Dictionary keyed by pair tuples. Each value is a dataframe with
# vocab terms as the index, and columns of paired difference and
# individual scores for the two identity terms.
self.bias_results_dict = self.calc_bias(self.assoc_results_dict)
def count_words_per_sentence(self):
# Counts the number of each vocabulary item per-sentence in batches.
logs.info("Creating co-occurrence matrix for nPMI calculations.")
word_cnts_per_sentence = []
logs.info(self.tokenized_sentence_df)
batches = np.linspace(0, self.tokenized_sentence_df.shape[0],
NUM_BATCHES).astype(int)
# Creates matrix of size # batches x # sentences
for batch_num in range(len(batches) - 1):
# Makes matrix shape: batch size (# sentences) x # words,
# with the occurrence of each word per sentence.
# vocab_counts_df.index is the vocabulary.
mlb = MultiLabelBinarizer(classes=self.vocabulary)
if batch_num % 100 == 0:
logs.debug(
"%s of %s sentence binarize batches." % (
str(batch_num), str(len(batches)))
)
# Per-sentence word counts
sentence_batch = self.tokenized_sentence_df[
batches[batch_num]:batches[batch_num + 1]]
mlb_series = mlb.fit_transform(sentence_batch)
word_cnts_per_sentence.append(mlb_series)
return word_cnts_per_sentence
def calc_measures(self):
id_results = {}
for subgroup in self.given_id_terms:
logs.info("Calculating for %s " % subgroup)
# Index of the identity term in the vocabulary
subgroup_idx = self.vocabulary.index(subgroup)
print("idx is %s" % subgroup_idx)
logs.debug("Calculating co-occurrences...")
vocab_cooc_df = self.calc_cooccurrences(subgroup, subgroup_idx)
logs.debug("Calculating PMI...")
pmi_df = self.calc_PMI(vocab_cooc_df, subgroup)
logs.debug("PMI dataframe is:")
logs.debug(pmi_df)
logs.debug("Calculating nPMI...")
npmi_df = self.calc_nPMI(pmi_df, vocab_cooc_df, subgroup)
logs.debug("npmi df is")
logs.debug(npmi_df)
# Create a data structure for the identity term associations
id_results[subgroup] = {"count": vocab_cooc_df,
"pmi": pmi_df,
"npmi": npmi_df}
logs.debug("results_dict is:")
print(id_results)
return id_results
def calc_cooccurrences(self, subgroup, subgroup_idx):
initialize = True
coo_df = None
# Big computation here! Should only happen once.
logs.debug(
"Approaching big computation! Here, we binarize all words in the "
"sentences, making a sparse matrix of sentences."
)
for batch_id in range(len(self.word_cnts_per_sentence)):
# Every 100 batches, print out the progress.
if not batch_id % 100:
logs.debug(
"%s of %s co-occurrence count batches"
% (str(batch_id), str(len(self.word_cnts_per_sentence)))
)
# List of all the sentences (list of vocab) in that batch
batch_sentence_row = self.word_cnts_per_sentence[batch_id]
# Dataframe of # sentences in batch x vocabulary size
sent_batch_df = pd.DataFrame(batch_sentence_row)
# Subgroup counts per-sentence for the given batch
subgroup_df = sent_batch_df[subgroup_idx]
subgroup_df.columns = [subgroup]
# Remove the sentences where the count of the subgroup is 0.
# This way we have less computation & resources needs.
subgroup_df = subgroup_df[subgroup_df > 0]
mlb_subgroup_only = sent_batch_df[sent_batch_df[subgroup_idx] > 0]
# Create cooccurrence matrix for the given subgroup and all words.
batch_coo_df = pd.DataFrame(mlb_subgroup_only.T.dot(subgroup_df))
# Creates a batch-sized dataframe of co-occurrence counts.
# Note these could just be summed rather than be batch size.
if initialize:
coo_df = batch_coo_df
else:
coo_df = coo_df.add(batch_coo_df, fill_value=0)
initialize = False
logs.debug("Made co-occurrence matrix")
logs.debug(coo_df)
count_df = coo_df.set_index(self.vocab_counts_df.index)
count_df.columns = ["count"]
count_df["count"] = count_df["count"].astype(int)
return count_df
def calc_PMI(self, vocab_cooc_df, subgroup):
"""A
# PMI(x;y) = h(y) - h(y|x)
# = h(subgroup) - h(subgroup|word)az
# = log (p(subgroup|word) / p(subgroup))
# nPMI additionally divides by -log(p(x,y)) = -log(p(x|y)p(y))
"""
print("vocab cooc df")
print(vocab_cooc_df)
print("vocab counts")
print(self.vocab_counts_df["count"])
# Calculation of p(subgroup)
subgroup_prob = self.vocab_counts_df.loc[subgroup]["proportion"]
# Calculation of p(subgroup|word) = count(subgroup,word) / count(word)
# Because the indices match (the vocab words),
# this division doesn't need to specify the index (I think?!)
vocab_cooc_df.columns = ["cooc"]
p_subgroup_g_word = (
vocab_cooc_df["cooc"] / self.vocab_counts_df["count"])
logs.info("p_subgroup_g_word is")
logs.info(p_subgroup_g_word)
pmi_df = pd.DataFrame()
pmi_df[subgroup] = np.log(p_subgroup_g_word / subgroup_prob).dropna()
# Note: A potentially faster solution for adding count, npmi,
# can be based on this zip idea:
# df_test['size_kb'], df_test['size_mb'], df_test['size_gb'] =
# zip(*df_test['size'].apply(sizes))
return pmi_df
def calc_nPMI(self, pmi_df, vocab_cooc_df, subgroup):
"""
# nPMI additionally divides by -log(p(x,y)) = -log(p(x|y)p(y))
# = -log(p(word|subgroup)p(word))
"""
p_word_g_subgroup = vocab_cooc_df["cooc"] / sum(vocab_cooc_df["cooc"])
logs.debug("p_word_g_subgroup")
logs.debug(p_word_g_subgroup)
p_word = pmi_df.apply(
lambda x: self.vocab_counts_df.loc[x.name]["proportion"], axis=1
)
logs.debug("p word is")
logs.debug(p_word)
normalize_pmi = -np.log(p_word_g_subgroup * p_word)
npmi_df = pd.DataFrame()
npmi_df[subgroup] = pmi_df[subgroup] / normalize_pmi
return npmi_df.dropna()
def calc_bias(self, measurements_dict, measure="npmi"):
"""Uses the subgroup dictionaries to compute the differences across pairs.
Uses dictionaries rather than dataframes due to the fact that dicts seem
to be preferred amongst evaluate users so far.
:return: Dict of (id_term1, id_term2):{term1:diff, term2:diff ...}"""
paired_results_dict = {}
for pair in self.paired_terms:
paired_results = pd.DataFrame()
s1 = pair[0]
s2 = pair[1]
s1_results = measurements_dict[s1][measure]
s2_results = measurements_dict[s2][measure]
# !!! This is the final result of all the work !!!
word_diffs = s1_results[s1] - s2_results[s2]
paired_results[("%s - %s" % (s1, s2))] = word_diffs
paired_results[s1] = s1_results
paired_results[s2] = s2_results
paired_results_dict[pair] = paired_results.dropna()
logs.debug("Paired bias results from the main nPMI class are ")
logs.debug(paired_results_dict)
return paired_results_dict
def _write_debug_msg(self, batch_id, subgroup_df=None,
subgroup_sentences=None, msg_type="batching"):
if msg_type == "batching":
if not batch_id % 100:
logs.debug(
"%s of %s co-occurrence count batches"
% (str(batch_id), str(len(self.word_cnts_per_sentence)))
)
elif msg_type == "transpose":
if not batch_id % 100:
logs.debug("Removing 0 counts, subgroup_df is")
logs.debug(subgroup_df)
logs.debug("subgroup_sentences is")
logs.debug(subgroup_sentences)
logs.debug(
"Now we do the transpose approach for co-occurrences")