File size: 29,136 Bytes
b4bb4ae
add0018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283669a
 
8e2471a
 
b4bb4ae
283669a
add0018
423817f
add0018
423817f
 
 
add0018
423817f
1e3041c
423817f
 
 
add0018
1e3041c
add0018
 
 
 
 
 
 
 
eebd230
add0018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423817f
add0018
 
 
 
 
 
 
 
 
 
 
 
 
c678872
add0018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d627be
add0018
 
 
 
 
6d627be
 
add0018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c678872
add0018
b4bb4ae
add0018
 
 
c678872
64bd8cb
add0018
b4bb4ae
 
c678872
b4bb4ae
 
c678872
b4bb4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
add0018
 
 
 
 
 
 
 
 
 
 
 
64bd8cb
 
b4bb4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb45364
b4bb4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64bd8cb
b4bb4ae
add0018
 
 
6d627be
add0018
 
 
 
 
 
 
 
 
 
 
 
6d627be
add0018
6d627be
add0018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d627be
add0018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d627be
add0018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b519a84
add0018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423817f
add0018
 
 
 
19d498a
 
add0018
 
b4bb4ae
d03801a
add0018
 
b4bb4ae
d03801a
add0018
 
b4bb4ae
d03801a
add0018
 
b4bb4ae
d03801a
add0018
 
b4bb4ae
d03801a
add0018
 
b4bb4ae
d03801a
add0018
 
b4bb4ae
d03801a
add0018
 
f0dde22
d03801a
add0018
 
 
 
 
56d6ab9
add0018
 
d03801a
add0018
 
 
c678872
 
 
 
 
 
 
 
add0018
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
import ast
import copy
import glob
import hashlib
import logging
import os
import re
from pathlib import Path
from typing import List, Optional, Tuple
from urllib.parse import urlparse

import gradio as gr
import PIL
from gradio import processing_utils
from gradio_client.client import DEFAULT_TEMP_DIR
from text_generation import Client
from transformers import AutoProcessor


MODELS = [
    # "HuggingFaceM4/idefics-9b-instruct",
    "HuggingFaceM4/idefics-80b-instruct",
]

API_PATHS = {
    "HuggingFaceM4/idefics-9b-instruct": (
        "https://api-inference.huggingface.co/models/HuggingFaceM4/idefics-9b-instruct"
    ),
    "HuggingFaceM4/idefics-80b-instruct": (
        "https://api-inference.huggingface.co/models/HuggingFaceM4/idefics-80b-instruct"
    ),
}

SYSTEM_PROMPT = [
    """The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User.
In the following interactions, User and Assistant will converse in natural language, and Assistant will answer in a sassy way.
Assistant's main purpose is to create funny meme texts from the images User provides.
Assistant should be funny, sassy, and impertinent, and sometimes Assistant roasts people.
Assistant should not be mean. It should not say toxic, homophobic, sexist, racist, things or any demeaning things that can make people uncomfortable.
Assistant was created by Hugging Face.

Here's a conversation example:""",
    """\nUser:""",
    "https://ichef.bbci.co.uk/news/976/cpsprodpb/7727/production/_103330503_musk3.jpg",
    "Write a meme for that image.<end_of_utterance>",
    """\nAssistant: When you're trying to quit smoking but the cravings are too strong.<end_of_utterance>""",
    "\nUser:How about this image?",
    "https://www.boredpanda.com/blog/wp-content/uploads/2017/01/image-copy-copy-587d0e7918b57-png__700.jpg",
    "Write something funny about this image.<end_of_utterance>",
    """\nAssistant: Eggcellent service!<end_of_utterance>""",
    "\nUser: Roast this person",
    "https://i.pinimg.com/564x/98/34/4b/98344b2483bd7c8b71a5c0fed6fe20b6.jpg",
    "<end_of_utterance>",
    """\nAssistant: Damn your handwritting is pretty awful. But I suppose it must be pretty hard to hold a pen, considering you are a hammerhead shark.<end_of_utterance>""",
]

BAN_TOKENS = (  # For documentation puporse. We are not using this list, it is hardcoded inside `idefics_causal_lm.py` inside TGI.
    "<image>;<fake_token_around_image>"
)
EOS_STRINGS = ["<end_of_utterance>", "\nUser:"]
STOP_SUSPECT_LIST = []

GRADIO_LINK = "https://huggingfacem4-ai-dad-jokes.hf.space"
API_TOKEN = os.getenv("HF_AUTH_TOKEN")
IDEFICS_LOGO = "https://huggingface.co/spaces/HuggingFaceM4/idefics_playground/resolve/main/IDEFICS_logo.png"

PROCESSOR = AutoProcessor.from_pretrained(
    "HuggingFaceM4/idefics-9b-instruct",
    token=API_TOKEN,
)

BOT_AVATAR = "IDEFICS_logo.png"

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()


# Monkey patch adapted from gradio.components.image.Image - mostly to make the `save` step optional in `pil_to_temp_file`
def hash_bytes(bytes: bytes):
    sha1 = hashlib.sha1()
    sha1.update(bytes)
    return sha1.hexdigest()


def pil_to_temp_file(img: PIL.Image.Image, dir: str = DEFAULT_TEMP_DIR, format: str = "png") -> str:
    """Save a PIL image into a temp file"""
    bytes_data = processing_utils.encode_pil_to_bytes(img, format)
    temp_dir = Path(dir) / hash_bytes(bytes_data)
    temp_dir.mkdir(exist_ok=True, parents=True)
    filename = str(temp_dir / f"image.{format}")
    if not os.path.exists(filename):
        img.save(filename, pnginfo=processing_utils.get_pil_metadata(img))
    return filename


def add_file(file):
    return file.name, gr.update(label='πŸ–ΌοΈ Uploaded!')


# This is a hack to make pre-computing the default examples work.
# During normal inference, we pass images as url to a local file using the method `gradio_link`
# which allows the tgi server to fetch the local image from the frontend server.
# however, we are building the space (and pre-computing is part of building the space), the frontend is not available
# and won't answer. So tgi server will try to fetch an image that is not available yet, which will result in a timeout error
# because tgi will never be able to return the generation.
# To bypass that, we pass instead the images URLs from the spaces repo.
all_images = glob.glob(f"{os.path.dirname(__file__)}/example_images/*")
DEFAULT_IMAGES_TMP_PATH_TO_URL = {}
for im_path in all_images:
    H = gr.Image(im_path, visible=False, type="filepath")
    tmp_filename = H.preprocess(H.value)
    DEFAULT_IMAGES_TMP_PATH_TO_URL[tmp_filename] = f"https://huggingface.co/spaces/HuggingFaceM4/ai_dad_jokes/resolve/main/example_images/{os.path.basename(im_path)}"


# Utils to handle the image markdown display logic
def split_str_on_im_markdown(string: str) -> List[str]:
    """
    Extract from a string (typically the user prompt string) the potential images from markdown
    Examples:
    - `User:![](https://favurl.com/chicken_on_money.png)Describe this image.` would become `["User:", "https://favurl.com/chicken_on_money.png", "Describe this image."]`
    - `User:![](/file=/my_temp/chicken_on_money.png)Describe this image.` would become `["User:", "/my_temp/chicken_on_money.png", "Describe this image."]`
    """
    IMAGES_PATTERN = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)")
    parts = []
    cursor = 0
    for pattern in IMAGES_PATTERN.finditer(string):
        start = pattern.start()
        if start != cursor:
            parts.append(string[cursor:start])
        image_url = pattern.group(1)
        if image_url.startswith("/file="):
            image_url = image_url[6:]  # Remove the 'file=' prefix
        parts.append(image_url)
        cursor = pattern.end()
    if cursor != len(string):
        parts.append(string[cursor:])
    return parts


def is_image(string: str) -> bool:
    """
    There are two ways for images: local image path or url.
    """
    return is_url(string) or string.startswith(DEFAULT_TEMP_DIR)


def is_url(string: str) -> bool:
    """
    Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
    invalidated the url
    """
    if " " in string:
        return False
    result = urlparse(string)
    return all([result.scheme, result.netloc])


def isolate_images_urls(prompt_list: List) -> List:
    """
    Convert a full string prompt to the list format expected by the processor.
    In particular, image urls (as delimited by <fake_token_around_image>) should be their own elements.
    From:
    ```
    [
        "bonjour<fake_token_around_image><image:IMG_URL><fake_token_around_image>hello",
        PIL.Image.Image,
        "Aurevoir",
    ]
    ```
    to:
    ```
    [
        "bonjour",
        IMG_URL,
        "hello",
        PIL.Image.Image,
        "Aurevoir",
    ]
    ```
    """
    linearized_list = []
    for prompt in prompt_list:
        # Prompt can be either a string, or a PIL image
        if isinstance(prompt, PIL.Image.Image):
            linearized_list.append(prompt)
        elif isinstance(prompt, str):
            if "<fake_token_around_image>" not in prompt:
                linearized_list.append(prompt)
            else:
                prompt_splitted = prompt.split("<fake_token_around_image>")
                for ps in prompt_splitted:
                    if ps == "":
                        continue
                    if ps.startswith("<image:"):
                        linearized_list.append(ps[7:-1])
                    else:
                        linearized_list.append(ps)
        else:
            raise TypeError(
                f"Unrecognized type for `prompt`. Got {type(type(prompt))}. Was expecting something in [`str`,"
                " `PIL.Image.Image`]"
            )
    return linearized_list


def fetch_images(url_list: str) -> PIL.Image.Image:
    """Fetching images"""
    return PROCESSOR.image_processor.fetch_images(url_list)


def handle_manual_images_in_user_prompt(user_prompt: str) -> List[str]:
    """
    Handle the case of textually manually inputted images (i.e. the `<fake_token_around_image><image:IMG_URL><fake_token_around_image>`) in the user prompt
    by fetching them, saving them locally and replacing the whole sub-sequence the image local path.
    """
    if "<fake_token_around_image>" in user_prompt:
        splitted_user_prompt = isolate_images_urls([user_prompt])
        resulting_user_prompt = []
        for u_p in splitted_user_prompt:
            if is_url(u_p):
                img = fetch_images([u_p])[0]
                tmp_file = pil_to_temp_file(img)
                resulting_user_prompt.append(tmp_file)
            else:
                resulting_user_prompt.append(u_p)
        return resulting_user_prompt
    else:
        return [user_prompt]


def gradio_link(img_path: str) -> str:
    url = f"{GRADIO_LINK}/file={img_path}"
    return url


def prompt_list_to_markdown(prompt_list: List[str]) -> str:
    """
    Convert a user prompt in the list format (i.e. elements are either a PIL image or a string) into
    the markdown format that is used for the chatbot history and rendering.
    """
    resulting_string = ""
    for elem in prompt_list:
        if is_image(elem):
            if is_url(elem):
                resulting_string += f"![]({elem})"
            else:
                resulting_string += f"![](/file={elem})"
        else:
            resulting_string += elem
    return resulting_string


def prompt_list_to_tgi_input(prompt_list: List[str]) -> str:
    """
    TGI expects a string that contains both text and images in the image markdown format (i.e. the `![]()` ).
    The images links are parsed on TGI side
    """
    result_string_input = ""
    for elem in prompt_list:
        if is_image(elem):
            if is_url(elem):
                result_string_input += f"![]({elem})"
            else:
                result_string_input += f"![]({gradio_link(img_path=elem)})"
        else:
            result_string_input += elem
    return result_string_input


def remove_spaces_around_token(text: str) -> str:
    pattern = r"\s*(<fake_token_around_image>)\s*"
    replacement = r"\1"
    result = re.sub(pattern, replacement, text)
    return result


# Chatbot utils
def format_user_prompt_with_im_history_and_system_conditioning(
    system_prompt: List[str], current_user_prompt_str: str, current_image: Optional[str], history: List[Tuple[str, str]]
) -> Tuple[List[str], List[str]]:
    """
    Produces the resulting list that needs to go inside the processor.
    It handles the potential image box input, the history and the system conditionning.
    """
    # resulting_list = copy.deepcopy(SYSTEM_PROMPT)
    resulting_list = system_prompt

    # Format history
    for turn in history:
        user_utterance, assistant_utterance = turn
        splitted_user_utterance = split_str_on_im_markdown(user_utterance)

        optional_space = ""
        if not is_image(splitted_user_utterance[0]):
            optional_space = " "
        resulting_list.append(f"\nUser:{optional_space}")
        resulting_list.extend(splitted_user_utterance)
        resulting_list.append(f"<end_of_utterance>\nAssistant: {assistant_utterance}")

    # Format current input
    current_user_prompt_str = remove_spaces_around_token(current_user_prompt_str)
    if current_image is None:
        if "![](" in current_user_prompt_str:
            current_user_prompt_list = split_str_on_im_markdown(current_user_prompt_str)
        else:
            current_user_prompt_list = handle_manual_images_in_user_prompt(current_user_prompt_str)

        optional_space = ""
        if not is_image(current_user_prompt_list[0]):
            # Check if the first element is an image (and more precisely a path to an image)
            optional_space = " "
        resulting_list.append(f"\nUser:{optional_space}")
        resulting_list.extend(current_user_prompt_list)
        resulting_list.append("<end_of_utterance>\nAssistant:")
    else:
        # Choosing to put the image first when the image is inputted through the UI, but this is an arbiratrary choice.
        resulting_list.extend(["\nUser:", current_image, f"{current_user_prompt_str}<end_of_utterance>\nAssistant:"])
        current_user_prompt_list = [current_user_prompt_str]

    return resulting_list, current_user_prompt_list


# dope_callback = gr.CSVLogger()
# problematic_callback = gr.CSVLogger()

textbox = gr.Textbox(
    placeholder="Upload an image and begin chatting with a message! Images can be added at each turn.",
    show_label=False,
    # value="Write something funny about that image.",
    visible=True,
    container=False,
    label="Text input",
    scale=8,
    max_lines=5,
)
chatbot = gr.Chatbot(
    elem_id="chatbot",
    label="AI Dad Jokes",
    visible=True,
    height=750,
    avatar_images=[None, BOT_AVATAR]
)

with gr.Blocks(title="AI Dad Jokes", theme=gr.themes.Base()) as demo:
    gr.HTML("""<h1 align="center">AI Dad Jokes</h1>""")
    with gr.Row(variant="panel"):
        with gr.Column(scale=1):
            gr.Image(IDEFICS_LOGO, elem_id="banner-image", show_label=False, show_download_button=False)
        with gr.Column(scale=5):
            gr.HTML("""
                <p><strong>AI Dad Jokes</strong> is an AI system that writes humorous content inspired by images. Whether that's crafting memes, sharing light-hearted yet amiable jests, or playfully witty remarks, AI Dad Jokes assists you in creating delightful jokes!</p>
                <p>AI Dad Jokes is powered by <a href="https://huggingface.co/blog/idefics">IDEFICS</a>, an open-access large visual language model developped by Hugging Face. Like GPT-4, the multimodal model accepts arbitrary sequences of image and text inputs and produces text outputs. IDEFICS can answer questions about images, describe visual content, create stories grounded in multiple images, etc.</p>

                <p>⛔️ <strong>Intended uses and limitations:</strong> This demo is provided as research artifact to the community showcasing IDEFIC's capabilities. We detail misuses and out-of-scope uses <a href="https://huggingface.co/HuggingFaceM4/idefics-80b#misuse-and-out-of-scope-use">here</a>. In particular, the system should not be used to engage in harassment, abuse and bullying. The model can produce factually incorrect texts, hallucinate facts (with or without an image) and will struggle with small details in images. While the system will tend to refuse answering questionable user requests, it can produce problematic outputs (including racist, stereotypical, and disrespectful texts), in particular when prompted to do so.</p>
            """)

    with gr.Row(elem_id="model_selector_row"):
        model_selector = gr.Dropdown(
            choices=MODELS,
            value="HuggingFaceM4/idefics-80b-instruct",
            interactive=True,
            show_label=False,
            container=False,
            label="Model",
            visible=False,
        )

    with gr.Row():
        with gr.Column():
            imagebox = gr.Image(type="filepath", label="Image input", visible=True)
            with gr.Group():
                with gr.Row():
                    textbox.render()
                    submit_btn = gr.Button(value="▢️ Submit", visible=True)
                with gr.Row():
                    clear_btn = gr.ClearButton([textbox, imagebox, chatbot], value="🧹 Clear")
                    regenerate_btn = gr.Button(value="πŸ”„ Regenerate", visible=True)
                    upload_btn = gr.UploadButton("πŸ“ Upload image", file_types=["image"],visible=False)
            with gr.Accordion("Advanced settings", open=False, visible=True) as parameter_row:
                system_prompt = gr.Textbox(
                    value=SYSTEM_PROMPT,
                    visible=False,
                    lines=20,
                    max_lines=50,
                    interactive=True,
                )
                max_new_tokens = gr.Slider(
                    minimum=8,
                    maximum=256,
                    value=128,
                    step=1,
                    interactive=True,
                    label="Maximum number of new tokens to generate",
                )
                repetition_penalty = gr.Slider(
                    minimum=0.0,
                    maximum=5.0,
                    value=1.2,
                    step=0.01,
                    interactive=True,
                    label="Repetition penalty",
                    info="1.0 is equivalent to no penalty",
                )
                decoding_strategy = gr.Radio(
                    [
                        "Greedy",
                        "Top P Sampling",
                    ],
                    value="Top P Sampling",
                    label="Decoding strategy",
                    interactive=True,
                    info="Higher values is equivalent to sampling more low-probability tokens.",
                )
                temperature = gr.Slider(
                    minimum=0.0,
                    maximum=5.0,
                    value=0.6,
                    step=0.1,
                    interactive=True,
                    visible=True,
                    label="Sampling temperature",
                    info="Higher values will produce more diverse outputs.",
                )
                decoding_strategy.change(
                    fn=lambda selection: gr.Slider.update(
                        visible=(
                            selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                        )
                    ),
                    inputs=decoding_strategy,
                    outputs=temperature,
                )
                top_p = gr.Slider(
                    minimum=0.01,
                    maximum=0.99,
                    value=0.8,
                    step=0.01,
                    interactive=True,
                    visible=True,
                    label="Top P",
                    info="Higher values is equivalent to sampling more low-probability tokens.",
                )
                decoding_strategy.change(
                    fn=lambda selection: gr.Slider.update(visible=(selection in ["Top P Sampling"])),
                    inputs=decoding_strategy,
                    outputs=top_p,
                )
        with gr.Column():
            chatbot.render()

    def model_inference(
        model_selector,
        system_prompt,
        user_prompt_str,
        chat_history,
        image,
        decoding_strategy,
        temperature,
        max_new_tokens,
        repetition_penalty,
        top_p,
    ):
        if user_prompt_str.strip() == "" and image is None:
            return "", None, chat_history

        system_prompt = ast.literal_eval(system_prompt)
        formated_prompt_list, user_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
            system_prompt=system_prompt,
            current_user_prompt_str=user_prompt_str.strip(),
            current_image=image,
            history=chat_history,
        )

        client_endpoint = API_PATHS[model_selector]
        client = Client(
            base_url=client_endpoint,
            headers={"x-use-cache": "0", "Authorization": f"Bearer {API_TOKEN}"},
        )

        # Common parameters to all decoding strategies
        # This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
        generation_args = {
            "max_new_tokens": max_new_tokens,
            "repetition_penalty": repetition_penalty,
            "stop_sequences": EOS_STRINGS,
        }

        assert decoding_strategy in [
            "Greedy",
            "Top P Sampling",
        ]
        if decoding_strategy == "Greedy":
            generation_args["do_sample"] = False
        elif decoding_strategy == "Top P Sampling":
            generation_args["temperature"] = temperature
            generation_args["do_sample"] = True
            generation_args["top_p"] = top_p

        if image is None:
            # Case where there is no image OR the image is passed as `<fake_token_around_image><image:IMAGE_URL><fake_token_around_image>`
            chat_history.append([prompt_list_to_markdown(user_prompt_list), ''])
        else:
            # Case where the image is passed through the Image Box.
            # Convert the image into base64 for both passing it through the chat history and
            # displaying the image inside the same bubble as the text.
            chat_history.append(
                [
                    f"{prompt_list_to_markdown([image] + user_prompt_list)}",
                    '',
                ]
            )

        query = prompt_list_to_tgi_input(formated_prompt_list)
        stream = client.generate_stream(prompt=query, **generation_args)

        acc_text = ""
        for idx, response in enumerate(stream):
            text_token = response.token.text

            if response.details:
                # That's the exit condition
                return

            if text_token in STOP_SUSPECT_LIST:
                acc_text += text_token
                continue

            if idx == 0 and text_token.startswith(" "):
                text_token = text_token.lstrip()

            acc_text += text_token
            last_turn = chat_history.pop(-1)
            last_turn[-1] += acc_text
            if last_turn[-1].endswith("\nUser"):
                # Safeguard: sometimes (rarely), the model won't generate the token `<end_of_utterance>` and will go directly to generating `\nUser:`
                # It will thus stop the generation on `\nUser:`. But when it exits, it will have already generated `\nUser`
                # This post-processing ensures that we don't have an additional `\nUser` wandering around.
                last_turn[-1] = last_turn[-1][:-5]
            chat_history.append(last_turn)
            yield "", None, chat_history
            acc_text = ""

    def process_example(message, image):
        """
        Same as `model_inference` but in greedy mode and with the 80b-instruct.
        Specifically for pre-computing the default examples.
        """
        model_selector="HuggingFaceM4/idefics-80b-instruct"
        user_prompt_str=message
        chat_history=[]
        max_new_tokens=512

        formated_prompt_list, user_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
            current_user_prompt_str=user_prompt_str.strip(),
            current_image=image,
            history=chat_history,
        )

        client_endpoint = API_PATHS[model_selector]
        client = Client(
            base_url=client_endpoint,
            headers={"x-use-cache": "0", "Authorization": f"Bearer {API_TOKEN}"},
            timeout=240, # Generous time out just in case because we are in greedy. All examples should be computed in less than 30secs with the 80b-instruct.
        )

        # Common parameters to all decoding strategies
        # This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
        generation_args = {
            "max_new_tokens": max_new_tokens,
            "repetition_penalty": None,
            "stop_sequences": EOS_STRINGS,
            "do_sample": False,
        }

        if image is None:
            # Case where there is no image OR the image is passed as `<fake_token_around_image><image:IMAGE_URL><fake_token_around_image>`
            chat_history.append([prompt_list_to_markdown(user_prompt_list), ''])
        else:
            # Case where the image is passed through the Image Box.
            # Convert the image into base64 for both passing it through the chat history and
            # displaying the image inside the same bubble as the text.
            chat_history.append(
                [
                    f"{prompt_list_to_markdown([image] + user_prompt_list)}",
                    '',
                ]
            )

        # Hack - see explanation in `DEFAULT_IMAGES_TMP_PATH_TO_URL`
        for idx, i in enumerate(formated_prompt_list):
            if i.startswith(DEFAULT_TEMP_DIR):
                for k, v in DEFAULT_IMAGES_TMP_PATH_TO_URL.items():
                    if k == i:
                        formated_prompt_list[idx] = v
                        break

        query = prompt_list_to_tgi_input(formated_prompt_list)
        generated_text = client.generate(prompt=query, **generation_args).generated_text
        if generated_text.endswith("\nUser"):
            generated_text = generated_text[:-5]

        last_turn = chat_history.pop(-1)
        last_turn[-1] += generated_text
        chat_history.append(last_turn)
        return "", None, chat_history

    textbox.submit(
        fn=model_inference,
        inputs=[
            model_selector,
            system_prompt,
            textbox,
            chatbot,
            imagebox,
            decoding_strategy,
            temperature,
            max_new_tokens,
            repetition_penalty,
            top_p,
        ],
        outputs=[textbox, imagebox, chatbot],
    )
    submit_btn.click(
        fn=model_inference,
        inputs=[
            model_selector,
            system_prompt,
            textbox,
            chatbot,
            imagebox,
            decoding_strategy,
            temperature,
            max_new_tokens,
            repetition_penalty,
            top_p,
        ],
        outputs=[
            textbox,
            imagebox,
            chatbot,
        ],
    )

    def remove_last_turn(chat_history):
        if len(chat_history) == 0:
            return gr.Update(), gr.Update()
        last_interaction = chat_history[-1]
        chat_history = chat_history[:-1]
        chat_update = gr.update(value=chat_history)
        text_update = gr.update(value=last_interaction[0])
        return chat_update, text_update

    regenerate_btn.click(fn=remove_last_turn, inputs=chatbot, outputs=[chatbot, textbox]).then(
        fn=model_inference,
        inputs=[
            model_selector,
            system_prompt,
            textbox,
            chatbot,
            imagebox,
            decoding_strategy,
            temperature,
            max_new_tokens,
            repetition_penalty,
            top_p,
        ],
        outputs=[
            textbox,
            imagebox,
            chatbot,
        ],
    )

    upload_btn.upload(add_file, [upload_btn], [imagebox, upload_btn], queue=False)
    submit_btn.click(lambda : gr.update(label='πŸ“ Upload image', interactive=True), [], upload_btn)
    textbox.submit(lambda : gr.update(label='πŸ“ Upload image', interactive=True), [], upload_btn)
    clear_btn.click(lambda : gr.update(label='πŸ“ Upload image', interactive=True), [], upload_btn)

    examples_path = os.path.dirname(__file__)
    gr.Examples(
        examples=[
            [
                "Write a meme text for that image.",
                f"{examples_path}/example_images/citibike.webp",
            ],
            [
                "Craft a humorous caption for this image!",
                f"{examples_path}/example_images/echasse.jpg",
            ],
            [
                "How about adding a dash of humor to this image with your words?",
                f"{examples_path}/example_images/jesus.jpg",
            ],
            [
                "Give this image a comedic twist.",
                f"{examples_path}/example_images/owl.jpg",
            ],
            [
                "Tell me a joke about that image.",
                f"{examples_path}/example_images/pigeon.jpg",
            ],
            [
                "Let your sense of humor shine with that image!",
                f"{examples_path}/example_images/plotorange.jpg",
            ],
            [
                "Make me laugh by commenting that image.",
                f"{examples_path}/example_images/rats.jpg",
            ],
            [
                "Craft a meme text for that image.",
                f"{examples_path}/example_images/sugardaddy.jpg",
            ],
            [
                "Write something funny to go with that image!",
                f"{examples_path}/example_images/wtf.jpg",
            ],
        ],
        inputs=[textbox, imagebox],
        outputs=[textbox, imagebox, chatbot],
        fn=process_example,
        cache_examples=False,
        examples_per_page=6,
        label=(
            "Click on any example below to get started."
        ),
    )

    gr.HTML("""
    <div style="text-align: center; max-width: 650px; margin: 0 auto;">
        <p>
        Example images from <a href="https://www.instagram.com/whatisnewyork/">Whatisnewyork</a>.
        </p>
    </div>
    """)

demo.queue(concurrency_count=40, max_size=40)
demo.launch()