Spaces:
Runtime error
Runtime error
File size: 29,136 Bytes
b4bb4ae add0018 283669a 8e2471a b4bb4ae 283669a add0018 423817f add0018 423817f add0018 423817f 1e3041c 423817f add0018 1e3041c add0018 eebd230 add0018 423817f add0018 c678872 add0018 6d627be add0018 6d627be add0018 c678872 add0018 b4bb4ae add0018 c678872 64bd8cb add0018 b4bb4ae c678872 b4bb4ae c678872 b4bb4ae add0018 64bd8cb b4bb4ae bb45364 b4bb4ae 64bd8cb b4bb4ae add0018 6d627be add0018 6d627be add0018 6d627be add0018 6d627be add0018 6d627be add0018 b519a84 add0018 423817f add0018 19d498a add0018 b4bb4ae d03801a add0018 b4bb4ae d03801a add0018 b4bb4ae d03801a add0018 b4bb4ae d03801a add0018 b4bb4ae d03801a add0018 b4bb4ae d03801a add0018 b4bb4ae d03801a add0018 f0dde22 d03801a add0018 56d6ab9 add0018 d03801a add0018 c678872 add0018 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 |
import ast
import copy
import glob
import hashlib
import logging
import os
import re
from pathlib import Path
from typing import List, Optional, Tuple
from urllib.parse import urlparse
import gradio as gr
import PIL
from gradio import processing_utils
from gradio_client.client import DEFAULT_TEMP_DIR
from text_generation import Client
from transformers import AutoProcessor
MODELS = [
# "HuggingFaceM4/idefics-9b-instruct",
"HuggingFaceM4/idefics-80b-instruct",
]
API_PATHS = {
"HuggingFaceM4/idefics-9b-instruct": (
"https://api-inference.huggingface.co/models/HuggingFaceM4/idefics-9b-instruct"
),
"HuggingFaceM4/idefics-80b-instruct": (
"https://api-inference.huggingface.co/models/HuggingFaceM4/idefics-80b-instruct"
),
}
SYSTEM_PROMPT = [
"""The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User.
In the following interactions, User and Assistant will converse in natural language, and Assistant will answer in a sassy way.
Assistant's main purpose is to create funny meme texts from the images User provides.
Assistant should be funny, sassy, and impertinent, and sometimes Assistant roasts people.
Assistant should not be mean. It should not say toxic, homophobic, sexist, racist, things or any demeaning things that can make people uncomfortable.
Assistant was created by Hugging Face.
Here's a conversation example:""",
"""\nUser:""",
"https://ichef.bbci.co.uk/news/976/cpsprodpb/7727/production/_103330503_musk3.jpg",
"Write a meme for that image.<end_of_utterance>",
"""\nAssistant: When you're trying to quit smoking but the cravings are too strong.<end_of_utterance>""",
"\nUser:How about this image?",
"https://www.boredpanda.com/blog/wp-content/uploads/2017/01/image-copy-copy-587d0e7918b57-png__700.jpg",
"Write something funny about this image.<end_of_utterance>",
"""\nAssistant: Eggcellent service!<end_of_utterance>""",
"\nUser: Roast this person",
"https://i.pinimg.com/564x/98/34/4b/98344b2483bd7c8b71a5c0fed6fe20b6.jpg",
"<end_of_utterance>",
"""\nAssistant: Damn your handwritting is pretty awful. But I suppose it must be pretty hard to hold a pen, considering you are a hammerhead shark.<end_of_utterance>""",
]
BAN_TOKENS = ( # For documentation puporse. We are not using this list, it is hardcoded inside `idefics_causal_lm.py` inside TGI.
"<image>;<fake_token_around_image>"
)
EOS_STRINGS = ["<end_of_utterance>", "\nUser:"]
STOP_SUSPECT_LIST = []
GRADIO_LINK = "https://huggingfacem4-ai-dad-jokes.hf.space"
API_TOKEN = os.getenv("HF_AUTH_TOKEN")
IDEFICS_LOGO = "https://huggingface.co/spaces/HuggingFaceM4/idefics_playground/resolve/main/IDEFICS_logo.png"
PROCESSOR = AutoProcessor.from_pretrained(
"HuggingFaceM4/idefics-9b-instruct",
token=API_TOKEN,
)
BOT_AVATAR = "IDEFICS_logo.png"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
# Monkey patch adapted from gradio.components.image.Image - mostly to make the `save` step optional in `pil_to_temp_file`
def hash_bytes(bytes: bytes):
sha1 = hashlib.sha1()
sha1.update(bytes)
return sha1.hexdigest()
def pil_to_temp_file(img: PIL.Image.Image, dir: str = DEFAULT_TEMP_DIR, format: str = "png") -> str:
"""Save a PIL image into a temp file"""
bytes_data = processing_utils.encode_pil_to_bytes(img, format)
temp_dir = Path(dir) / hash_bytes(bytes_data)
temp_dir.mkdir(exist_ok=True, parents=True)
filename = str(temp_dir / f"image.{format}")
if not os.path.exists(filename):
img.save(filename, pnginfo=processing_utils.get_pil_metadata(img))
return filename
def add_file(file):
return file.name, gr.update(label='πΌοΈ Uploaded!')
# This is a hack to make pre-computing the default examples work.
# During normal inference, we pass images as url to a local file using the method `gradio_link`
# which allows the tgi server to fetch the local image from the frontend server.
# however, we are building the space (and pre-computing is part of building the space), the frontend is not available
# and won't answer. So tgi server will try to fetch an image that is not available yet, which will result in a timeout error
# because tgi will never be able to return the generation.
# To bypass that, we pass instead the images URLs from the spaces repo.
all_images = glob.glob(f"{os.path.dirname(__file__)}/example_images/*")
DEFAULT_IMAGES_TMP_PATH_TO_URL = {}
for im_path in all_images:
H = gr.Image(im_path, visible=False, type="filepath")
tmp_filename = H.preprocess(H.value)
DEFAULT_IMAGES_TMP_PATH_TO_URL[tmp_filename] = f"https://huggingface.co/spaces/HuggingFaceM4/ai_dad_jokes/resolve/main/example_images/{os.path.basename(im_path)}"
# Utils to handle the image markdown display logic
def split_str_on_im_markdown(string: str) -> List[str]:
"""
Extract from a string (typically the user prompt string) the potential images from markdown
Examples:
- `User:![](https://favurl.com/chicken_on_money.png)Describe this image.` would become `["User:", "https://favurl.com/chicken_on_money.png", "Describe this image."]`
- `User:![](/file=/my_temp/chicken_on_money.png)Describe this image.` would become `["User:", "/my_temp/chicken_on_money.png", "Describe this image."]`
"""
IMAGES_PATTERN = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)")
parts = []
cursor = 0
for pattern in IMAGES_PATTERN.finditer(string):
start = pattern.start()
if start != cursor:
parts.append(string[cursor:start])
image_url = pattern.group(1)
if image_url.startswith("/file="):
image_url = image_url[6:] # Remove the 'file=' prefix
parts.append(image_url)
cursor = pattern.end()
if cursor != len(string):
parts.append(string[cursor:])
return parts
def is_image(string: str) -> bool:
"""
There are two ways for images: local image path or url.
"""
return is_url(string) or string.startswith(DEFAULT_TEMP_DIR)
def is_url(string: str) -> bool:
"""
Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
invalidated the url
"""
if " " in string:
return False
result = urlparse(string)
return all([result.scheme, result.netloc])
def isolate_images_urls(prompt_list: List) -> List:
"""
Convert a full string prompt to the list format expected by the processor.
In particular, image urls (as delimited by <fake_token_around_image>) should be their own elements.
From:
```
[
"bonjour<fake_token_around_image><image:IMG_URL><fake_token_around_image>hello",
PIL.Image.Image,
"Aurevoir",
]
```
to:
```
[
"bonjour",
IMG_URL,
"hello",
PIL.Image.Image,
"Aurevoir",
]
```
"""
linearized_list = []
for prompt in prompt_list:
# Prompt can be either a string, or a PIL image
if isinstance(prompt, PIL.Image.Image):
linearized_list.append(prompt)
elif isinstance(prompt, str):
if "<fake_token_around_image>" not in prompt:
linearized_list.append(prompt)
else:
prompt_splitted = prompt.split("<fake_token_around_image>")
for ps in prompt_splitted:
if ps == "":
continue
if ps.startswith("<image:"):
linearized_list.append(ps[7:-1])
else:
linearized_list.append(ps)
else:
raise TypeError(
f"Unrecognized type for `prompt`. Got {type(type(prompt))}. Was expecting something in [`str`,"
" `PIL.Image.Image`]"
)
return linearized_list
def fetch_images(url_list: str) -> PIL.Image.Image:
"""Fetching images"""
return PROCESSOR.image_processor.fetch_images(url_list)
def handle_manual_images_in_user_prompt(user_prompt: str) -> List[str]:
"""
Handle the case of textually manually inputted images (i.e. the `<fake_token_around_image><image:IMG_URL><fake_token_around_image>`) in the user prompt
by fetching them, saving them locally and replacing the whole sub-sequence the image local path.
"""
if "<fake_token_around_image>" in user_prompt:
splitted_user_prompt = isolate_images_urls([user_prompt])
resulting_user_prompt = []
for u_p in splitted_user_prompt:
if is_url(u_p):
img = fetch_images([u_p])[0]
tmp_file = pil_to_temp_file(img)
resulting_user_prompt.append(tmp_file)
else:
resulting_user_prompt.append(u_p)
return resulting_user_prompt
else:
return [user_prompt]
def gradio_link(img_path: str) -> str:
url = f"{GRADIO_LINK}/file={img_path}"
return url
def prompt_list_to_markdown(prompt_list: List[str]) -> str:
"""
Convert a user prompt in the list format (i.e. elements are either a PIL image or a string) into
the markdown format that is used for the chatbot history and rendering.
"""
resulting_string = ""
for elem in prompt_list:
if is_image(elem):
if is_url(elem):
resulting_string += f"![]({elem})"
else:
resulting_string += f"![](/file={elem})"
else:
resulting_string += elem
return resulting_string
def prompt_list_to_tgi_input(prompt_list: List[str]) -> str:
"""
TGI expects a string that contains both text and images in the image markdown format (i.e. the `![]()` ).
The images links are parsed on TGI side
"""
result_string_input = ""
for elem in prompt_list:
if is_image(elem):
if is_url(elem):
result_string_input += f"![]({elem})"
else:
result_string_input += f"![]({gradio_link(img_path=elem)})"
else:
result_string_input += elem
return result_string_input
def remove_spaces_around_token(text: str) -> str:
pattern = r"\s*(<fake_token_around_image>)\s*"
replacement = r"\1"
result = re.sub(pattern, replacement, text)
return result
# Chatbot utils
def format_user_prompt_with_im_history_and_system_conditioning(
system_prompt: List[str], current_user_prompt_str: str, current_image: Optional[str], history: List[Tuple[str, str]]
) -> Tuple[List[str], List[str]]:
"""
Produces the resulting list that needs to go inside the processor.
It handles the potential image box input, the history and the system conditionning.
"""
# resulting_list = copy.deepcopy(SYSTEM_PROMPT)
resulting_list = system_prompt
# Format history
for turn in history:
user_utterance, assistant_utterance = turn
splitted_user_utterance = split_str_on_im_markdown(user_utterance)
optional_space = ""
if not is_image(splitted_user_utterance[0]):
optional_space = " "
resulting_list.append(f"\nUser:{optional_space}")
resulting_list.extend(splitted_user_utterance)
resulting_list.append(f"<end_of_utterance>\nAssistant: {assistant_utterance}")
# Format current input
current_user_prompt_str = remove_spaces_around_token(current_user_prompt_str)
if current_image is None:
if "![](" in current_user_prompt_str:
current_user_prompt_list = split_str_on_im_markdown(current_user_prompt_str)
else:
current_user_prompt_list = handle_manual_images_in_user_prompt(current_user_prompt_str)
optional_space = ""
if not is_image(current_user_prompt_list[0]):
# Check if the first element is an image (and more precisely a path to an image)
optional_space = " "
resulting_list.append(f"\nUser:{optional_space}")
resulting_list.extend(current_user_prompt_list)
resulting_list.append("<end_of_utterance>\nAssistant:")
else:
# Choosing to put the image first when the image is inputted through the UI, but this is an arbiratrary choice.
resulting_list.extend(["\nUser:", current_image, f"{current_user_prompt_str}<end_of_utterance>\nAssistant:"])
current_user_prompt_list = [current_user_prompt_str]
return resulting_list, current_user_prompt_list
# dope_callback = gr.CSVLogger()
# problematic_callback = gr.CSVLogger()
textbox = gr.Textbox(
placeholder="Upload an image and begin chatting with a message! Images can be added at each turn.",
show_label=False,
# value="Write something funny about that image.",
visible=True,
container=False,
label="Text input",
scale=8,
max_lines=5,
)
chatbot = gr.Chatbot(
elem_id="chatbot",
label="AI Dad Jokes",
visible=True,
height=750,
avatar_images=[None, BOT_AVATAR]
)
with gr.Blocks(title="AI Dad Jokes", theme=gr.themes.Base()) as demo:
gr.HTML("""<h1 align="center">AI Dad Jokes</h1>""")
with gr.Row(variant="panel"):
with gr.Column(scale=1):
gr.Image(IDEFICS_LOGO, elem_id="banner-image", show_label=False, show_download_button=False)
with gr.Column(scale=5):
gr.HTML("""
<p><strong>AI Dad Jokes</strong> is an AI system that writes humorous content inspired by images. Whether that's crafting memes, sharing light-hearted yet amiable jests, or playfully witty remarks, AI Dad Jokes assists you in creating delightful jokes!</p>
<p>AI Dad Jokes is powered by <a href="https://huggingface.co/blog/idefics">IDEFICS</a>, an open-access large visual language model developped by Hugging Face. Like GPT-4, the multimodal model accepts arbitrary sequences of image and text inputs and produces text outputs. IDEFICS can answer questions about images, describe visual content, create stories grounded in multiple images, etc.</p>
<p>βοΈ <strong>Intended uses and limitations:</strong> This demo is provided as research artifact to the community showcasing IDEFIC's capabilities. We detail misuses and out-of-scope uses <a href="https://huggingface.co/HuggingFaceM4/idefics-80b#misuse-and-out-of-scope-use">here</a>. In particular, the system should not be used to engage in harassment, abuse and bullying. The model can produce factually incorrect texts, hallucinate facts (with or without an image) and will struggle with small details in images. While the system will tend to refuse answering questionable user requests, it can produce problematic outputs (including racist, stereotypical, and disrespectful texts), in particular when prompted to do so.</p>
""")
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=MODELS,
value="HuggingFaceM4/idefics-80b-instruct",
interactive=True,
show_label=False,
container=False,
label="Model",
visible=False,
)
with gr.Row():
with gr.Column():
imagebox = gr.Image(type="filepath", label="Image input", visible=True)
with gr.Group():
with gr.Row():
textbox.render()
submit_btn = gr.Button(value="βΆοΈ Submit", visible=True)
with gr.Row():
clear_btn = gr.ClearButton([textbox, imagebox, chatbot], value="π§Ή Clear")
regenerate_btn = gr.Button(value="π Regenerate", visible=True)
upload_btn = gr.UploadButton("π Upload image", file_types=["image"],visible=False)
with gr.Accordion("Advanced settings", open=False, visible=True) as parameter_row:
system_prompt = gr.Textbox(
value=SYSTEM_PROMPT,
visible=False,
lines=20,
max_lines=50,
interactive=True,
)
max_new_tokens = gr.Slider(
minimum=8,
maximum=256,
value=128,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
minimum=0.0,
maximum=5.0,
value=1.2,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty",
)
decoding_strategy = gr.Radio(
[
"Greedy",
"Top P Sampling",
],
value="Top P Sampling",
label="Decoding strategy",
interactive=True,
info="Higher values is equivalent to sampling more low-probability tokens.",
)
temperature = gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.6,
step=0.1,
interactive=True,
visible=True,
label="Sampling temperature",
info="Higher values will produce more diverse outputs.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(
visible=(
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
)
),
inputs=decoding_strategy,
outputs=temperature,
)
top_p = gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.8,
step=0.01,
interactive=True,
visible=True,
label="Top P",
info="Higher values is equivalent to sampling more low-probability tokens.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(visible=(selection in ["Top P Sampling"])),
inputs=decoding_strategy,
outputs=top_p,
)
with gr.Column():
chatbot.render()
def model_inference(
model_selector,
system_prompt,
user_prompt_str,
chat_history,
image,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
):
if user_prompt_str.strip() == "" and image is None:
return "", None, chat_history
system_prompt = ast.literal_eval(system_prompt)
formated_prompt_list, user_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
system_prompt=system_prompt,
current_user_prompt_str=user_prompt_str.strip(),
current_image=image,
history=chat_history,
)
client_endpoint = API_PATHS[model_selector]
client = Client(
base_url=client_endpoint,
headers={"x-use-cache": "0", "Authorization": f"Bearer {API_TOKEN}"},
)
# Common parameters to all decoding strategies
# This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
"stop_sequences": EOS_STRINGS,
}
assert decoding_strategy in [
"Greedy",
"Top P Sampling",
]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
if image is None:
# Case where there is no image OR the image is passed as `<fake_token_around_image><image:IMAGE_URL><fake_token_around_image>`
chat_history.append([prompt_list_to_markdown(user_prompt_list), ''])
else:
# Case where the image is passed through the Image Box.
# Convert the image into base64 for both passing it through the chat history and
# displaying the image inside the same bubble as the text.
chat_history.append(
[
f"{prompt_list_to_markdown([image] + user_prompt_list)}",
'',
]
)
query = prompt_list_to_tgi_input(formated_prompt_list)
stream = client.generate_stream(prompt=query, **generation_args)
acc_text = ""
for idx, response in enumerate(stream):
text_token = response.token.text
if response.details:
# That's the exit condition
return
if text_token in STOP_SUSPECT_LIST:
acc_text += text_token
continue
if idx == 0 and text_token.startswith(" "):
text_token = text_token.lstrip()
acc_text += text_token
last_turn = chat_history.pop(-1)
last_turn[-1] += acc_text
if last_turn[-1].endswith("\nUser"):
# Safeguard: sometimes (rarely), the model won't generate the token `<end_of_utterance>` and will go directly to generating `\nUser:`
# It will thus stop the generation on `\nUser:`. But when it exits, it will have already generated `\nUser`
# This post-processing ensures that we don't have an additional `\nUser` wandering around.
last_turn[-1] = last_turn[-1][:-5]
chat_history.append(last_turn)
yield "", None, chat_history
acc_text = ""
def process_example(message, image):
"""
Same as `model_inference` but in greedy mode and with the 80b-instruct.
Specifically for pre-computing the default examples.
"""
model_selector="HuggingFaceM4/idefics-80b-instruct"
user_prompt_str=message
chat_history=[]
max_new_tokens=512
formated_prompt_list, user_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
current_user_prompt_str=user_prompt_str.strip(),
current_image=image,
history=chat_history,
)
client_endpoint = API_PATHS[model_selector]
client = Client(
base_url=client_endpoint,
headers={"x-use-cache": "0", "Authorization": f"Bearer {API_TOKEN}"},
timeout=240, # Generous time out just in case because we are in greedy. All examples should be computed in less than 30secs with the 80b-instruct.
)
# Common parameters to all decoding strategies
# This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": None,
"stop_sequences": EOS_STRINGS,
"do_sample": False,
}
if image is None:
# Case where there is no image OR the image is passed as `<fake_token_around_image><image:IMAGE_URL><fake_token_around_image>`
chat_history.append([prompt_list_to_markdown(user_prompt_list), ''])
else:
# Case where the image is passed through the Image Box.
# Convert the image into base64 for both passing it through the chat history and
# displaying the image inside the same bubble as the text.
chat_history.append(
[
f"{prompt_list_to_markdown([image] + user_prompt_list)}",
'',
]
)
# Hack - see explanation in `DEFAULT_IMAGES_TMP_PATH_TO_URL`
for idx, i in enumerate(formated_prompt_list):
if i.startswith(DEFAULT_TEMP_DIR):
for k, v in DEFAULT_IMAGES_TMP_PATH_TO_URL.items():
if k == i:
formated_prompt_list[idx] = v
break
query = prompt_list_to_tgi_input(formated_prompt_list)
generated_text = client.generate(prompt=query, **generation_args).generated_text
if generated_text.endswith("\nUser"):
generated_text = generated_text[:-5]
last_turn = chat_history.pop(-1)
last_turn[-1] += generated_text
chat_history.append(last_turn)
return "", None, chat_history
textbox.submit(
fn=model_inference,
inputs=[
model_selector,
system_prompt,
textbox,
chatbot,
imagebox,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
],
outputs=[textbox, imagebox, chatbot],
)
submit_btn.click(
fn=model_inference,
inputs=[
model_selector,
system_prompt,
textbox,
chatbot,
imagebox,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
],
outputs=[
textbox,
imagebox,
chatbot,
],
)
def remove_last_turn(chat_history):
if len(chat_history) == 0:
return gr.Update(), gr.Update()
last_interaction = chat_history[-1]
chat_history = chat_history[:-1]
chat_update = gr.update(value=chat_history)
text_update = gr.update(value=last_interaction[0])
return chat_update, text_update
regenerate_btn.click(fn=remove_last_turn, inputs=chatbot, outputs=[chatbot, textbox]).then(
fn=model_inference,
inputs=[
model_selector,
system_prompt,
textbox,
chatbot,
imagebox,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
],
outputs=[
textbox,
imagebox,
chatbot,
],
)
upload_btn.upload(add_file, [upload_btn], [imagebox, upload_btn], queue=False)
submit_btn.click(lambda : gr.update(label='π Upload image', interactive=True), [], upload_btn)
textbox.submit(lambda : gr.update(label='π Upload image', interactive=True), [], upload_btn)
clear_btn.click(lambda : gr.update(label='π Upload image', interactive=True), [], upload_btn)
examples_path = os.path.dirname(__file__)
gr.Examples(
examples=[
[
"Write a meme text for that image.",
f"{examples_path}/example_images/citibike.webp",
],
[
"Craft a humorous caption for this image!",
f"{examples_path}/example_images/echasse.jpg",
],
[
"How about adding a dash of humor to this image with your words?",
f"{examples_path}/example_images/jesus.jpg",
],
[
"Give this image a comedic twist.",
f"{examples_path}/example_images/owl.jpg",
],
[
"Tell me a joke about that image.",
f"{examples_path}/example_images/pigeon.jpg",
],
[
"Let your sense of humor shine with that image!",
f"{examples_path}/example_images/plotorange.jpg",
],
[
"Make me laugh by commenting that image.",
f"{examples_path}/example_images/rats.jpg",
],
[
"Craft a meme text for that image.",
f"{examples_path}/example_images/sugardaddy.jpg",
],
[
"Write something funny to go with that image!",
f"{examples_path}/example_images/wtf.jpg",
],
],
inputs=[textbox, imagebox],
outputs=[textbox, imagebox, chatbot],
fn=process_example,
cache_examples=False,
examples_per_page=6,
label=(
"Click on any example below to get started."
),
)
gr.HTML("""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<p>
Example images from <a href="https://www.instagram.com/whatisnewyork/">Whatisnewyork</a>.
</p>
</div>
""")
demo.queue(concurrency_count=40, max_size=40)
demo.launch()
|