Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ import spaces
|
|
7 |
from diffusers import DiffusionPipeline
|
8 |
import copy
|
9 |
import random
|
|
|
10 |
|
11 |
# Load LoRAs from JSON file
|
12 |
with open('loras.json', 'r') as f:
|
@@ -19,6 +20,23 @@ pipe.to("cuda")
|
|
19 |
|
20 |
MAX_SEED = 2**32-1
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def update_selection(evt: gr.SelectData):
|
23 |
selected_lora = loras[evt.index]
|
24 |
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
@@ -40,30 +58,34 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
40 |
trigger_word = selected_lora["trigger_word"]
|
41 |
|
42 |
# Load LoRA weights
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
47 |
|
48 |
# Set random seed for reproducibility
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
yield image, seed
|
65 |
|
66 |
-
|
|
|
67 |
|
68 |
|
69 |
css = '''
|
|
|
7 |
from diffusers import DiffusionPipeline
|
8 |
import copy
|
9 |
import random
|
10 |
+
import time
|
11 |
|
12 |
# Load LoRAs from JSON file
|
13 |
with open('loras.json', 'r') as f:
|
|
|
20 |
|
21 |
MAX_SEED = 2**32-1
|
22 |
|
23 |
+
class calculateDuration:
|
24 |
+
def __init__(self, activity_name=""):
|
25 |
+
self.activity_name = activity_name
|
26 |
+
|
27 |
+
def __enter__(self):
|
28 |
+
self.start_time = time.time()
|
29 |
+
return self
|
30 |
+
|
31 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
32 |
+
self.end_time = time.time()
|
33 |
+
self.elapsed_time = self.end_time - self.start_time
|
34 |
+
if self.activity_name:
|
35 |
+
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
36 |
+
else:
|
37 |
+
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
38 |
+
|
39 |
+
|
40 |
def update_selection(evt: gr.SelectData):
|
41 |
selected_lora = loras[evt.index]
|
42 |
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
|
|
58 |
trigger_word = selected_lora["trigger_word"]
|
59 |
|
60 |
# Load LoRA weights
|
61 |
+
with calculateDuration("Loading LoRA weights"):
|
62 |
+
if "weights" in selected_lora:
|
63 |
+
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
64 |
+
else:
|
65 |
+
pipe.load_lora_weights(lora_path)
|
66 |
|
67 |
# Set random seed for reproducibility
|
68 |
+
with calculateDuration("Randomizing seed"):
|
69 |
+
if randomize_seed:
|
70 |
+
seed = random.randint(0, MAX_SEED)
|
71 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
72 |
+
|
73 |
+
with calculateDuration("Generating image"):
|
74 |
+
# Generate image
|
75 |
+
image = pipe(
|
76 |
+
prompt=f"{prompt} {trigger_word}",
|
77 |
+
num_inference_steps=steps,
|
78 |
+
guidance_scale=cfg_scale,
|
79 |
+
width=width,
|
80 |
+
height=height,
|
81 |
+
generator=generator,
|
82 |
+
joint_attention_kwargs={"scale": lora_scale},
|
83 |
+
).images[0]
|
84 |
|
85 |
yield image, seed
|
86 |
|
87 |
+
with calculateDuration("Unloading weights"):
|
88 |
+
pipe.unload_lora_weights()
|
89 |
|
90 |
|
91 |
css = '''
|