File size: 28,218 Bytes
880de81 4c7362f 880de81 4c7362f 880de81 4c7362f 880de81 4c7362f 880de81 4c7362f 880de81 4c7362f 880de81 4c7362f 880de81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 |
import torch
from typing import List, Tuple, Dict, Optional
from tqdm import tqdm
import logging
from PIL import Image
import datetime
from num2words import num2words
import subprocess
import sys
from modeling_smolvlm import SmolVLMForConditionalGeneration
from transformers import AutoProcessor, AutoTokenizer
import json
import math
logger = logging.getLogger(__name__)
logging.basicConfig(
level=logging.INFO
)
SYSTEM_MESSAGE = (
"Carefully watch the video and pay attention to the cause and sequence of events, "
"the detail and movement of objects, and the action and pose of persons. "
"Based on your observations, answer the question with yes or no."
" <end_of_utterance>"
)
FRAME_TIMESTAMP_MESSAGE = "Frame from"
DEFAULT_VIDEO_INTRO = (
"You are provided the following series of {frame_count} frames "
"from a {video_duration} [H:MM:SS] video.\n"
)
# ----------------------------------------------------------------------
# Helper functions for resizing, etc.
# ----------------------------------------------------------------------
def round_by_factor(number: float, factor: int) -> int:
return round(number / factor) * factor
def ceil_by_factor(number: float, factor: int) -> int:
return math.ceil(number / factor) * factor
def floor_by_factor(number: float, factor: int) -> int:
return math.floor(number / factor) * factor
def smart_resize(
height: int,
width: int,
factor: int,
min_pixels: int,
max_pixels: int,
max_ratio: float,
) -> Tuple[int, int]:
"""
Rescale (height, width) so that:
- aspect ratio <= max_ratio
- total area in [min_pixels, max_pixels]
- each dimension is multiple of factor
"""
ratio = max(height, width) / min(height, width)
if ratio > max_ratio:
raise ValueError(f"Aspect ratio {ratio:.2f} > {max_ratio}")
h_ = max(factor, round_by_factor(height, factor))
w_ = max(factor, round_by_factor(width, factor))
area = h_ * w_
if area > max_pixels:
scale = math.sqrt((height * width) / max_pixels)
h_ = floor_by_factor(height / scale, factor)
w_ = floor_by_factor(width / scale, factor)
elif area < min_pixels:
scale = math.sqrt(min_pixels / (height * width))
h_ = ceil_by_factor(height * scale, factor)
w_ = ceil_by_factor(width * scale, factor)
return h_, w_
def _smart_nframes(
total_frames: int,
video_fps: float,
frame_factor: int = 1,
target_fps: float = 2.0,
min_frames: int = 4,
max_frames: int = 32
) -> int:
"""
Decide how many frames to pick from a range based on target FPS.
Result is clamped to [min_frames, max_frames] and must be multiple of frame_factor.
"""
minf = ceil_by_factor(min_frames, frame_factor)
maxf = floor_by_factor(min(max_frames, total_frames), frame_factor)
val = total_frames / video_fps * target_fps
val = min(max(val, minf), maxf)
nframes = round_by_factor(val, frame_factor)
if not (frame_factor <= nframes <= total_frames):
raise ValueError(f"Invalid nframes={nframes}, out of range.")
return int(nframes)
def get_video_duration_seconds(video_path: str) -> float:
"""
Use ffprobe to retrieve the total duration of a video (in seconds).
"""
cmd = [
"ffprobe",
"-v", "quiet",
"-print_format", "json",
"-show_format",
video_path
]
result = subprocess.run(cmd, capture_output=True, text=True)
info = json.loads(result.stdout)
return float(info["format"]["duration"])
def get_fixed_30s_segments(video_path: str) -> list:
"""
Produce a list of (start_sec, end_sec) tuples in 30-second blocks
for the entire video.
"""
duration = get_video_duration_seconds(video_path)
segments = []
start = 0.0
block_size = 10.0
while start < duration:
end = min(start + block_size, duration)
segments.append((start, end))
start = end
return segments
class SmartVideoFrameExtractor:
"""
This class extracts frames from a specific portion of a video
(defined by start_frame and end_frame or start_sec and end_sec).
"""
def __init__(
self,
frame_factor: int = 1,
min_pixels: int = 384 * 384,
max_pixels: int = 384 * 384 * 4,
max_ratio: float = 2.0
):
self.frame_factor = frame_factor
self.min_pixels = min_pixels
self.max_pixels = max_pixels
self.max_ratio = max_ratio
try:
import decord
self.reader = "decord"
decord.bridge.set_bridge("torch")
except ImportError:
self.reader = "torchvision"
logger.info("Decord not found, falling back to torchvision")
def extract_frames(
self,
video_path: str,
start_sec: float,
end_sec: float,
target_fps: float = 1.0,
min_frames: int = 4,
max_frames: int = 32
) -> Tuple[List[Image.Image], List[str]]:
"""Extract frames from [start_sec, end_sec] using decord or torchvision."""
if self.reader == "decord":
return self._extract_frames_decord(
video_path, start_sec, end_sec, target_fps, min_frames, max_frames
)
else:
return self._extract_frames_torchvision(
video_path, start_sec, end_sec, target_fps, min_frames, max_frames
)
def _extract_frames_decord(
self,
video_path: str,
start_sec: float,
end_sec: float,
target_fps: float,
min_frames: int,
max_frames: int
) -> Tuple[List[Image.Image], List[str]]:
"""Extract frames with decord from a certain segment."""
import decord
from decord import VideoReader
vr = VideoReader(video_path)
total_frames = len(vr)
video_fps = vr.get_avg_fps()
# Convert start/end times to frame indices
start_frame = int(start_sec * video_fps)
end_frame = min(int(end_sec * video_fps), total_frames - 1)
if start_frame >= end_frame:
return [], []
working_frames = end_frame - start_frame + 1
nframes = _smart_nframes(
working_frames,
video_fps,
self.frame_factor,
target_fps,
min_frames,
max_frames
)
indices = torch.linspace(start_frame, end_frame, nframes).round().long()
frames_tensor = vr.get_batch(indices).cpu() # NHWC
frames = []
timestamps = []
for i, frame_idx in enumerate(indices):
frame = frames_tensor[i].numpy()
pil_image = Image.fromarray(frame).convert("RGB")
# Compute timestamp
sec = frame_idx.item() / video_fps
mm = int(sec // 60)
ss = int(sec % 60)
timestamps.append(f"{mm:02d}:{ss:02d}")
# Resize
w, h = pil_image.size
rh, rw = smart_resize(
h, w,
factor=8,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
max_ratio=self.max_ratio
)
pil_image = pil_image.resize((rw, rh), Image.Resampling.LANCZOS)
frames.append(pil_image)
return frames, timestamps, end_sec - start_sec
def _extract_frames_torchvision(
self,
video_path: str,
start_sec: float,
end_sec: float,
target_fps: float,
min_frames: int,
max_frames: int
) -> Tuple[List[Image.Image], List[str]]:
"""Extract frames with torchvision from a certain segment."""
from torchvision import io
# Read entire video (beware of memory usage on large videos!)
vid, _, info = io.read_video(
video_path,
start_pts=0,
end_pts=None,
pts_unit="sec",
output_format="TCHW"
)
total_frames = vid.size(0)
video_fps = info["video_fps"]
# Convert start/end times to frame indices
start_frame = int(start_sec * video_fps)
end_frame = min(int(end_sec * video_fps), total_frames - 1)
if start_frame >= end_frame:
return [], []
working_frames = end_frame - start_frame + 1
nframes = _smart_nframes(
working_frames,
video_fps,
self.frame_factor,
target_fps,
min_frames,
max_frames
)
indices = torch.linspace(start_frame, end_frame, nframes).round().long()
frames = []
timestamps = []
for idx in indices:
frame = vid[idx].permute(1, 2, 0).numpy()
pil_image = Image.fromarray(frame).convert("RGB")
sec = idx.item() / video_fps
mm = int(sec // 60)
ss = int(sec % 60)
timestamps.append(f"{mm:02d}:{ss:02d}")
w, h = pil_image.size
rh, rw = smart_resize(
h, w,
factor=8,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
max_ratio=self.max_ratio
)
pil_image = pil_image.resize((rw, rh), Image.Resampling.LANCZOS)
frames.append(pil_image)
return frames, timestamps, end_sec - start_sec
class BatchedVideoHighlightDetector:
"""
Optimized version of video highlight detection that processes multiple segments
in parallel using batched inference.
"""
def __init__(
self,
model,
processor,
device="cuda",
batch_size=8,
max_frames_per_segment=32,
target_fps=1.0
):
self.model = model
self.processor = processor
self.device = device
self.batch_size = batch_size
self.max_frames_per_segment = max_frames_per_segment
self.target_fps = target_fps
def _extract_frames_batch(
self,
video_path: str,
segments: List[Tuple[float, float]]
) -> List[Tuple[List[Image.Image], List[str], float]]:
"""
Extract frames from multiple segments in parallel using decord's batch capabilities.
"""
import decord
from decord import VideoReader
decord.bridge.set_bridge("torch")
# Open video once for all segments
vr = VideoReader(video_path)
video_fps = vr.get_avg_fps()
results = []
for start_sec, end_sec in segments:
# Convert time to frame indices
start_frame = int(start_sec * video_fps)
end_frame = min(int(end_sec * video_fps), len(vr) - 1)
# Calculate number of frames to sample
segment_duration = end_sec - start_sec
desired_frames = min(
int(segment_duration * self.target_fps),
self.max_frames_per_segment
)
# Generate frame indices
indices = torch.linspace(start_frame, end_frame, desired_frames).round().long()
# Extract frames
frames_tensor = vr.get_batch(indices).cpu() # NHWC format
# Convert to PIL and generate timestamps
frames = []
timestamps = []
for i, frame_idx in enumerate(indices):
frame = frames_tensor[i].numpy()
pil_image = Image.fromarray(frame).convert("RGB")
# Resize maintaining aspect ratio
w, h = pil_image.size
scale = min(384 / w, 384 / h)
new_w = int(w * scale)
new_h = int(h * scale)
pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
frames.append(pil_image)
# Generate timestamp
sec = frame_idx.item() / video_fps
mm = int(sec // 60)
ss = int(sec % 60)
timestamps.append(f"{mm:02d}:{ss:02d}")
results.append((frames, timestamps, segment_duration))
return results
def _prepare_batch_inputs(
self,
frame_batches: List[Tuple[List[Image.Image], List[str], float]],
highlight_types: str
) -> Dict[str, torch.Tensor]:
"""
Convert a batch of frame sequences into model inputs.
"""
conversations = []
all_frames = []
for frames, timestamps, duration in frame_batches:
# Build conversation for each segment
conversation = [
{
"role": "system",
"content": [{
"type": "text",
"text": "You are a helpful assistant that analyzes videos for specific moments of interest."
}]
},
{
"role": "user",
"content": []
}
]
# Add video intro
conversation[1]["content"].append({
"type": "text",
"text": f"You are provided the following series of {num2words(len(frames))} frames from a {str(datetime.timedelta(seconds=duration))} [H:MM:SS] video.\n"
})
# Add frames with timestamps
for ts, frame in zip(timestamps, frames):
conversation[1]["content"].extend([
{
"type": "text",
"text": f"Frame from {ts}:"
},
{
"type": "image"
}
])
# Add highlight check question
conversation[1]["content"].append({
"type": "text",
"text": f"""Do you see any of the following types of highlight moments in these frames?
Potential highlights to look for:
{highlight_types}
Only answer yes if you see any of those moments and answer no if you don't."""
})
conversations.append(conversation)
all_frames.extend(frames)
# Convert to model inputs using processor
prompts = [
self.processor.apply_chat_template(conv, add_generation_prompt=True)
for conv in conversations
]
# Create batched inputs
model_inputs = self.processor(
text=prompts,
images=all_frames,
return_tensors="pt",
padding=True
).to(self.device)
return model_inputs
def _process_segment_batch(
self,
video_path: str,
segments: List[Tuple[float, float]],
highlight_types: str
) -> List[bool]:
"""
Process a batch of segments and return which ones contain highlights.
"""
# Extract frames for all segments in batch
frame_batches = self._extract_frames_batch(video_path, segments)
# Prepare model inputs
model_inputs = self._prepare_batch_inputs(frame_batches, highlight_types)
# Generate responses for entire batch
outputs = self.model.generate(
**model_inputs,
max_new_tokens=256,
num_beams=5,
temperature=0.7,
do_sample=True,
use_cache=True
)
# Process responses
responses = [
self.processor.decode(output, skip_special_tokens=True).lower().split("assistant:")[1]
for output in outputs
]
# Check for "yes" in responses
return ["yes" in response for response in responses]
def create_highlight_video(self, video_path: str, output_path: str) -> List[Tuple[float, float]]:
"""
Main function that executes the batched highlight detection pipeline.
"""
# Step 1: Analyze video content
logger.info("Step 1: Analyzing video content...")
video_description = self.analyze_video_content(video_path)
logger.info(f"Video description: {video_description}")
# Step 2: Determine highlight types
logger.info("Step 2: Determining highlight types...")
highlight_types = self.determine_highlights(video_description)
logger.info(f"Looking for highlights: {highlight_types}")
# Step 3: Get all segments
segments = self._get_fixed_30s_segments(video_path)
# Step 4: Process segments in batches
logger.info("Step 3: Detecting highlight segments in batches...")
kept_segments = []
for i in tqdm(range(0, len(segments), self.batch_size)):
batch_segments = segments[i:i + self.batch_size]
keep_flags = self._process_segment_batch(video_path, batch_segments, highlight_types)
for segment, keep in zip(batch_segments, keep_flags):
if keep:
kept_segments.append(segment)
logger.info(f"\tKeeping segment {segment}")
# Step 5: Create final video
if kept_segments:
logger.info(f"Creating highlight video with {len(kept_segments)} segments...")
self._concatenate_scenes(video_path, kept_segments, output_path)
else:
logger.info("No highlights detected")
return kept_segments
def analyze_video_content(self, video_path: str, sample_rate: float = 0.2) -> str:
"""
Step 1: Sample frames from the full video and get a general description
"""
extractor = SmartVideoFrameExtractor()
duration = get_video_duration_seconds(video_path)
# Sample frames from entire video
frames, timestamps, duration_seconds = extractor.extract_frames(
video_path,
start_sec=0,
end_sec=duration,
target_fps=sample_rate,
max_frames=32 # Limit total frames to not overwhelm model
)
# Build conversation asking for video description
system_message = "You are a helpful assistant that can understand videos. Describe what type of video this is and what's happening in it."
conversation = [
{
"role": "system",
"content": [{"type": "text", "text": system_message}]
},
{
"role": "user",
"content": []
}
]
# Add video intro using DEFAULT_VIDEO_INTRO
conversation[1]["content"].append({
"type": "text",
"text": DEFAULT_VIDEO_INTRO.format(
frame_count=num2words(len(frames)),
video_duration=str(datetime.timedelta(seconds=duration_seconds))
)
})
# Add frames with timestamps
for ts, frame in zip(timestamps, frames):
conversation[1]["content"].extend([
{
"type": "text",
"text": f"{FRAME_TIMESTAMP_MESSAGE} {ts}:"
},
{
"type": "image"
}
])
# Add question
conversation[1]["content"].append({
"type": "text",
"text": "What type of video is this and what's happening in it? Be specific about the content type and general activities you observe."
})
# Get model response
prompt = self.processor.apply_chat_template(conversation, add_generation_prompt=True)
model_inputs = self.processor(
text=prompt,
images=frames,
return_tensors="pt"
).to(self.model.device)
outputs = self.model.generate(
**model_inputs,
max_new_tokens=512,
num_beams=5,
temperature=0.7,
do_sample=True,
use_cache=True
)
return self.processor.decode(outputs[0], skip_special_tokens=True).split("Assistant:")[1]
def determine_highlights(self, video_description: str) -> str:
"""
Step 2: Based on video description, determine what would constitute highlights
"""
conversation = [{
"role": "system",
"content": [{"type": "text", "text": "You are a professional video editor specializing in creating viral highlight reels. You understand that the most engaging highlights are brief and focus only on exceptional moments that are statistically rare or particularly dramatic. For sports content, you typically select only 3-5 of the most remarkable moments that would make viewers say 'I can't believe that happened!'"}]
}, {
"role": "user",
"content": [{
"type": "text",
"text": f"""Here is a description of a video:
{video_description}
Based on this description, list which rare segments should be included in a best of the best higlight."""
}]
}]
# Based on this description, what unique segments should be included in a highlight video? list moments that cannot be missed and their description, nothing else."""
# Based on this description, what unique segments should be included in a highlight video? list moments that cannot be missed."""
prompt = self.processor.apply_chat_template(conversation, add_generation_prompt=True)
model_inputs = self.processor(text=prompt, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(
**model_inputs,
max_new_tokens=256,
num_beams=5,
temperature=0.7,
do_sample=True
)
return self.processor.decode(outputs[0], skip_special_tokens=True).split("Assistant:")[1]
def _get_fixed_30s_segments(self, video_path: str) -> List[Tuple[float, float]]:
"""Helper to get video segments"""
duration = self._get_video_duration_seconds(video_path)
segments = []
start = 0.0
block_size = 10.0
while start < duration:
end = min(start + block_size, duration)
segments.append((start, end))
start = end
return segments
def _get_video_duration_seconds(self, video_path: str) -> float:
"""Helper to get video duration"""
import json
import subprocess
cmd = [
"ffprobe",
"-v", "quiet",
"-print_format", "json",
"-show_format",
video_path
]
result = subprocess.run(cmd, capture_output=True, text=True)
info = json.loads(result.stdout)
return float(info["format"]["duration"])
def _concatenate_scenes(
self,
video_path: str,
scene_times: List[Tuple[float, float]],
output_path: str
):
"""
Concatenate selected (start_sec, end_sec) scenes from 'video_path' into 'output_path'
using a complex ffmpeg filter instead of multiple intermediate files.
"""
if not scene_times:
logger.warning("No scenes to concatenate, skipping.")
return
# Build the filter_complex string
# For each scene i, we create two filter chains: one for video [vN] and one for audio [aN].
# Then we feed them into the concat filter.
filter_complex_parts = []
concat_inputs = []
for i, (start_sec, end_sec) in enumerate(scene_times):
filter_complex_parts.append(
f"[0:v]trim=start={start_sec}:end={end_sec},"
f"setpts=PTS-STARTPTS[v{i}];"
)
filter_complex_parts.append(
f"[0:a]atrim=start={start_sec}:end={end_sec},"
f"asetpts=PTS-STARTPTS[a{i}];"
)
concat_inputs.append(f"[v{i}][a{i}]")
# Now build the actual concat invocation.
# n = number of segments to concat, v=1 video stream, a=1 audio stream
concat_filter = f"{''.join(concat_inputs)}concat=n={len(scene_times)}:v=1:a=1[outv][outa]"
filter_complex = "".join(filter_complex_parts) + concat_filter
# Build the ffmpeg command
cmd = [
"ffmpeg",
"-y", # overwrite
"-i", video_path,
"-filter_complex", filter_complex,
"-map", "[outv]",
"-map", "[outa]",
"-c:v", "libx264", # or any codec of your choice
"-c:a", "aac", # or any audio codec of your choice
output_path
]
logger.info(f"Running ffmpeg command: {' '.join(cmd)}")
subprocess.run(cmd, check=True)
logger.info(f"Final video saved to: {output_path}")
def load_model(
checkpoint_path: Optional[str] = None,
base_model_id: str = "HuggingFaceTB/SmolVLM2-2.2B-Instruct",
device: str = "cuda"
):
"""Load the model and processor."""
if device == "cuda" and not torch.cuda.is_available():
raise RuntimeError("CUDA requested but not available")
if device == "cuda":
torch.cuda.empty_cache()
# Initialize CUDA
torch.cuda.init()
video_target_size = 384
processor = AutoProcessor.from_pretrained(base_model_id)
processor.image_processor.size = {"longest_edge": video_target_size}
processor.image_processor.do_resize = True
processor.image_processor.do_image_splitting = False
model_kwargs = {
"torch_dtype": torch.bfloat16,
"device_map": device
}
if checkpoint_path:
model = SmolVLMForConditionalGeneration.from_pretrained(
checkpoint_path,
**model_kwargs
)
else:
model = SmolVLMForConditionalGeneration.from_pretrained(
base_model_id,
**model_kwargs
)
return model, processor
# def load_model(
# checkpoint_path: Optional[str] = None,
# base_model_id: str = "HuggingFaceTB/SmolVLM-2.2B-Instruct",
# device: str = "cuda"
# ):
# """Load the model and processor."""
# # For demonstration, we set the target size
# video_target_size = 384
# processor = AutoProcessor.from_pretrained(base_model_id)
# # Configure the image processor
# processor.image_processor.size = {"longest_edge": video_target_size}
# processor.image_processor.do_resize = True
# processor.image_processor.do_image_splitting = False
# if checkpoint_path:
# model = SmolVLMForConditionalGeneration.from_pretrained(
# checkpoint_path,
# torch_dtype=torch.bfloat16,
# device_map=device
# )
# else:
# model = SmolVLMForConditionalGeneration.from_pretrained(
# base_model_id,
# torch_dtype=torch.bfloat16,
# device_map=device
# )
# return model, processor
def main():
checkpoint_path = "/fsx/miquel/smolvlmvideo/checkpoints/final-visionUnfrozen-balanced/checkpoint-6550"
base_model_id = "HuggingFaceTB/SmolVLM-2.2B-Instruct"
device = "cuda" if torch.cuda.is_available() else "cpu"
model, processor = load_model(checkpoint_path, base_model_id, device)
detector = BatchedVideoHighlightDetector(model, processor, device=device)
if len(sys.argv) < 3:
print("Usage: python video_highlight_detector.py <input_video> <output_video>")
sys.exit(1)
video_path = sys.argv[1]
output_path = sys.argv[2]
# Create highlight video
highlight_segments = detector.create_highlight_video(video_path, output_path)
print(f"Created highlight video with {len(highlight_segments)} segments")
if __name__ == "__main__":
main()
|