import streamlit as st from datasets import load_dataset import os HF_TOKEN = os.environ.get("HF_TOKEN", None) st.set_page_config(page_title="FW Clusters inspection", layout="wide") st.title("FW clusters inspection") st.markdown(""" We clustered 100k FineWeb samples using [text-clustering](https://github.com/huggingface/text-clustering). Our approach involved prompting Mixtral to evaluate whether the topics in each cluster are educational or could be considered college material. Additionally, the model was tasked with assigning a category to each cluster from 23 predefined categories found in [AFAIK](https://afaik.io/). Sometimes, the model may define its own category. This can happen either within the context of AFAIK topics seperately. Hence the `Select Category Type` dropdown in our interface. """) @st.cache_data def load_data(educational_topic): ds = load_dataset("HuggingFaceTB/FW_clusters_under_afaik_topics", split="train", token=HF_TOKEN, num_proc=2) if educational_topic in ['Yes', 'No']: ds = ds.filter(lambda x: x['is_topic_educational'] == educational_topic) return ds @st.cache_data def get_categories_by_type(_ds, category_type): filtered_ds = _ds.filter(lambda x: x['category_type'] == category_type) return list(set(filtered_ds['category'])) st.subheader("Cluster information") col_1, col_2, col_3 = st.columns(3) with col_1: educational_topic = st.selectbox('Are the topics deemed educational by the LLM?', ["Yes", "No"]) ds = load_data(educational_topic) with col_2: category_types = ['afaik', 'defined_by_llm', 'defined_by_llm_under_afaik'] default_index = 0 if educational_topic == "Yes" else 1 selected_category_type = st.selectbox("Select Category Type", category_types, index=default_index) with col_3: categories = get_categories_by_type(ds, selected_category_type) selected_category = st.selectbox("Select Category", categories) selected_cluster = ds.filter(lambda x: x['category'] == selected_category) # Select sample index print(f"selected_cluster is {selected_cluster}") n_samples = len(selected_cluster) if n_samples > 0: col_1, col_2 = st.columns(2) with col_1: index_cluster = st.number_input(f"Found {len(selected_cluster)} clusters, choose one", min_value=0, max_value=len(selected_cluster)-1, value=0, step=1) files = selected_cluster[index_cluster]["examples"] with col_2: index_example = st.number_input(f"Found {len(files)} files in the cluster, choose one", min_value=0, max_value=len(files)-1, value=0, step=1) sample = files[index_example] st.markdown(sample) else: st