File size: 2,287 Bytes
1215771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from .regnet_model import RegNet
from .regnet_model import SimpleStem, ResBottleneckBlock

from detectron2.modeling.backbone.build import BACKBONE_REGISTRY
from detectron2.modeling.backbone.fpn import FPN, LastLevelMaxPool

from detectron2.layers import (
    Conv2d,
    DeformConv,
    FrozenBatchNorm2d,
    ModulatedDeformConv,
    ShapeSpec,
    get_norm,
)


# train.cudnn_benchmark = True

@BACKBONE_REGISTRY.register()
def build_regnet_fpn_backbone(cfg, input_shape: ShapeSpec):
    """
    Args:
        cfg: a detectron2 CfgNode
    Returns:
        backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`.
    """
    bottom_up = RegNet(
            stem_class=SimpleStem,
            stem_width=32,
            block_class=ResBottleneckBlock,
            depth=22,
            w_a=31.41,
            w_0=96,
            w_m=2.24,
            group_width=64,
            se_ratio=0.25,
            freeze_at=2,
            norm="FrozenBN",
            out_features=["s1", "s2", "s3", "s4"],
        )
    in_features = cfg.MODEL.FPN.IN_FEATURES
    out_channels = cfg.MODEL.FPN.OUT_CHANNELS
    backbone = FPN(
        bottom_up=bottom_up,
        in_features=in_features,
        out_channels=out_channels,
        norm=cfg.MODEL.FPN.NORM,
        top_block=LastLevelMaxPool(),
        fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
    )
    return backbone

@BACKBONE_REGISTRY.register()
def build_regnetx_fpn_backbone(cfg, input_shape: ShapeSpec):
    """
    Args:
        cfg: a detectron2 CfgNode
    Returns:
        backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`.
    """
    bottom_up = RegNet(
        stem_class=SimpleStem,
        stem_width=32,
        block_class=ResBottleneckBlock,
        depth=23,
        w_a=38.65,
        w_0=96,
        w_m=2.43,
        group_width=40,
        freeze_at=2,
        norm="FrozenBN",
        out_features=["s1", "s2", "s3", "s4"],
)
    in_features = cfg.MODEL.FPN.IN_FEATURES
    out_channels = cfg.MODEL.FPN.OUT_CHANNELS
    backbone = FPN(
        bottom_up=bottom_up,
        in_features=in_features,
        out_channels=out_channels,
        norm=cfg.MODEL.FPN.NORM,
        top_block=LastLevelMaxPool(),
        fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
    )
    return backbone