File size: 11,579 Bytes
39f90f0
 
 
 
 
1215771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
try:
    import detectron2
except:
    import os 
    os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
import torch
from detectron2.utils.logger import setup_logger
setup_logger()

from detectron2.config import get_cfg
import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.modeling import build_model
from detectron2.data.detection_utils import read_image
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog


import numpy as np
import cv2
import os
import time
import pickle
import gradio as gr
import tqdm
import matplotlib.pyplot as plt
import io
from PIL import Image
torch.manual_seed(0)
np.random.seed(0)

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

from models.regnet import build_regnet_fpn_backbone
import models.metadata as metadata

from utils_clustering import *

from base_cam import EigenCAM
from pytorch_grad_cam.utils.model_targets import FasterRCNNBoxScoreTarget

fullName2ab_dict = {'PASCAL-VOC':"voc", 'BDD100K':"bdd", 'KITTI':"kitti", 'Speed signs':"speed", 'NuScenes':"nu"}
ab2FullName_dict = {'voc':"PASCAL-VOC", 'bdd':"BDD100K", 'kitti':"KITTI", 'speed':"Speed signs", 'nu':"NuScenes"}
class Detectron2Monitor():
    def __init__(self, id, backbone, confidence_threshold=0.05):
        self.id, self.label_list = self._get_label_list(id)
        self.backbone = backbone
        self.confidence_threshold = confidence_threshold
        self.cfg, self.device, self.model = self._get_model()
        self.label_dict = {i:label for i, label in enumerate(self.label_list)}
        self.eval_list = ["ID-voc-OOD-coco", "OOD-open", "voc-val"] if self.id == "voc" else ["ID-bdd-OOD-coco", "OOD-open", "voc-ood", f"{self.id}-val"]
        MetadataCatalog.get("custom_dataset").set(thing_classes=self.label_list)
    
    def _get_label_list(self, id):
        id = fullName2ab_dict[id]
        if id == 'voc':      
            label_list = metadata.VOC_THING_CLASSES
        elif id == 'bdd':
            label_list = metadata.BDD_THING_CLASSES
        elif id == 'kitti':
            label_list = metadata.KITTI_THING_CLASSES
        elif id == 'speed' or id == 'prescan':
            label_list = metadata.SPEED_THING_CLASSES
        else:
            label_list = metadata.NU_THING_CLASSES
        return id, label_list

    def _get_model(self):
        cfg = get_cfg()
        cfg.merge_from_file(f"models/configs/vanilla_{self.backbone}.yaml")
        cfg.MODEL.WEIGHTS = f"models/weights/model_final_{self.backbone}_{self.id}.pth" 
        cfg.MODEL.DEVICE='cpu'
        cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(self.label_list)
        cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.confidence_threshold
        model = build_model(cfg)
        model.eval()
        checkpointer = DetectionCheckpointer(model)
        checkpointer.load(cfg.MODEL.WEIGHTS)
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = model.to(device)
        return cfg, device, model

    def _inference(self, model, inputs):
        with torch.no_grad():
            images = model.preprocess_image(inputs)  
            features = model.backbone(images.tensor)  
            proposals, _ = model.proposal_generator(images, features, None)  # RPN

            features_ = [features[f] for f in model.roi_heads.box_in_features]
            box_features = model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals])
            box_features = model.roi_heads.box_head(box_features)  # features of all 1k candidates
            predictions = model.roi_heads.box_predictor(box_features)
            pred_instances, pred_inds = model.roi_heads.box_predictor.inference(predictions, proposals)
            pred_instances = model.roi_heads.forward_with_given_boxes(features, pred_instances)

            # output boxes, masks, scores, etc
            pred_instances = model._postprocess(pred_instances, inputs, images.image_sizes)  # scale box to orig size
            # features of the proposed boxes
            feats = box_features[pred_inds].cpu().numpy()   
        return pred_instances, feats

    def _load_monitors(self, clustering_algo, nb_clusters, eps=5, min_samples=10):
        if clustering_algo == "dbscan":
            with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/eps{eps}_min_samples{min_samples}.pkl", 'rb') as f:
                monitors_dict = pickle.load(f)  
        else:
            with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/{nb_clusters}.pkl", 'rb') as f:
                monitors_dict = pickle.load(f)
        return monitors_dict
    
    def _evaluate(self, clustering_algo, nb_clusters, eps, min_samples):
        dataset_name = f"{self.id}-val"
        with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_tp_dict.pickle', 'rb') as f:
            feats_tp_dict = pickle.load(f)
        with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_fp_dict.pickle', 'rb') as f:
            feats_fp_dict = pickle.load(f)
        monitors_dict = self._load_monitors(clustering_algo, nb_clusters, eps, min_samples)
        # make verdicts on ID data
        data_tp = []
        data_fp = []
        accept_sum = {"tp": 0, "fp": 0}
        reject_sum = {"tp": 0, "fp": 0}
        for label in tqdm.tqdm(self.label_list, desc="Evaluation on ID data"): 
            if label in monitors_dict:    
                verdict = monitors_dict[label].make_verdicts(feats_tp_dict[label])
                data_tp.append([label, len(verdict), np.sum(verdict)/len(verdict)])
                accept_sum["tp"] += np.sum(verdict)
                reject_sum["tp"] += len(verdict) - np.sum(verdict)   
                verdict = monitors_dict[label].make_verdicts(feats_fp_dict[label])
                data_fp.append([label, len(verdict), (len(verdict)-np.sum(verdict))/len(verdict)])
                accept_sum["fp"] += np.sum(verdict)
                reject_sum["fp"] += len(verdict) - np.sum(verdict)
        TPR = round((accept_sum['tp'] / (reject_sum['tp'] + accept_sum['tp'])*100), 2)
        FPR =  round((accept_sum['fp'] / (reject_sum['fp'] + accept_sum['fp'])*100), 2)
        id_name = ab2FullName_dict[self.id]
        df_id = pd.DataFrame([[id_name, f"{TPR}%", f"{FPR}%"]], columns=["Dataset", "TPR", "FPR"])
        
        data_ood = []
        i = 0
        self.eval_list.remove(dataset_name)
        for dataset_name in tqdm.tqdm(self.eval_list, desc="Evaluation on OOD data"):
            accept_sum = {"tp": 0, "fp": 0}
            reject_sum = {"tp": 0, "fp": 0}
            with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_fp_dict.pickle', 'rb') as f:
                feats_fp_dict = pickle.load(f)
            for label in self.label_list:
                if label in monitors_dict:
                    verdict = monitors_dict[label].make_verdicts(feats_fp_dict[label])
                    accept_sum["fp"] += np.sum(verdict)
                    reject_sum["fp"] += len(verdict) - np.sum(verdict)
            FPR =  round((accept_sum['fp'] / (reject_sum['fp'] + accept_sum['fp'])*100), 2)
            data_ood.append([dataset_name, str(FPR)+"%"])
            i += 1
        # prepare dataframes
        df_ood = pd.DataFrame(data_ood, columns=["Dataset", "FPR"])
        df_ood["Dataset"] = ["COCO", "Open Images"] if self.id == "voc" else ["COCO", "Open Images", "VOC-OOD"]
        return df_id, df_ood

    def _postprocess_cam(self, raw_cam, img_width, img_height):
        cam_orig = np.sum(raw_cam, axis=0)  # [H,W]
        cam_orig = np.maximum(cam_orig, 0)  # ReLU
        cam_orig -= np.min(cam_orig)
        cam_orig /= np.max(cam_orig)
        cam = cv2.resize(cam_orig, (img_width, img_height))
        return cam

    def _fasterrcnn_reshape_transform(self, x):
        target_size = x['p6'].size()[-2 : ]
        activations = []
        for key, value in x.items():
            activations.append(torch.nn.functional.interpolate(torch.abs(value), target_size, mode='bilinear'))
        activations = torch.cat(activations, axis=1)
        return activations
    
    def _get_input_dict(self, original_image):
        height, width = original_image.shape[:2]
        transform_gen = T.ResizeShortestEdge(
        [self.cfg.INPUT.MIN_SIZE_TEST, self.cfg.INPUT.MIN_SIZE_TEST], self.cfg.INPUT.MAX_SIZE_TEST
        )
        image = transform_gen.get_transform(original_image).apply_image(original_image)
        image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
        inputs = {"image": image, "height": height, "width": width}
        return inputs
    
    def get_output(self, monitors_dict, img):
        image = read_image(img, format="BGR")
        input_image_dict = [self._get_input_dict(image)]
        pred_instances, feats = self._inference(self.model, input_image_dict)
        detections = pred_instances[0]["instances"].to("cpu")
        cls_idxs = detections.pred_classes.detach().numpy()
        # get labels from class indices
        labels = [self.label_dict[i] for i in cls_idxs]
        # count values in labels, and return a dictionary
        labels_count_dict = dict((i, labels.count(i)) for i in labels)
        v = Visualizer(image[..., ::-1], MetadataCatalog.get("custom_dataset"), scale=1)
        v = v.draw_instance_predictions(detections)
        img_detection = v.get_image()
        df = pd.DataFrame(list(labels_count_dict.items()), columns=['Object', 'Count'])
        verdicts = []
        for label, feat in zip(labels, feats):
            verdict = monitors_dict[label].make_verdicts(feat[np.newaxis,:])[0]
            verdicts.append(verdict)
        detections_ood = detections[[i for i, x in enumerate(verdicts) if not x]]
        detections_ood.pred_classes = torch.tensor([5]*len(detections_ood.pred_classes))
        labels_ood = [label for label, verdict in zip(labels, verdicts) if not verdict]
        verdicts_ood = ["Rejected"]*len(labels_ood)
        df_verdict = pd.DataFrame(list(zip(labels_ood, verdicts_ood)), columns=['Object', 'Verdict'])
        v = Visualizer(image[..., ::-1], MetadataCatalog.get("custom_dataset"), scale=1)
        for box in detections_ood.pred_boxes.to('cpu'):
            v.draw_box(box)
            v.draw_text("OOD", tuple(box[:2].numpy()))
        v = v.get_output()
        img_ood = v.get_image()
        pred_bboxes = detections.pred_boxes.tensor.numpy().astype(np.int32)
        target_layers = [self.model.backbone]
        targets = [FasterRCNNBoxScoreTarget(labels=labels, bounding_boxes=pred_bboxes)]
        cam = EigenCAM(self.model,
                        target_layers, 
                        use_cuda=False,
                        reshape_transform=self._fasterrcnn_reshape_transform)
        grayscale_cam = cam(input_image_dict, targets)
        cam = self._postprocess_cam(grayscale_cam, input_image_dict[0]["width"], input_image_dict[0]["height"])
        plt.rcParams["figure.figsize"] = (30,10)
        plt.imshow(img_detection[..., ::-1], interpolation='none')
        plt.imshow(cam, cmap='jet', alpha=0.5)
        plt.axis("off")
        img_buff = io.BytesIO()
        plt.savefig(img_buff, format='png', bbox_inches='tight', pad_inches=0)
        img_cam = Image.open(img_buff)
        image_dict = {}
        image_dict["image"] = image
        image_dict["cam"] = img_cam
        image_dict["detection"] = img_detection
        image_dict["verdict"] = img_ood
        return image_dict, df, df_verdict