Spaces:
Running
Running
File size: 11,579 Bytes
39f90f0 1215771 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
import torch
from detectron2.utils.logger import setup_logger
setup_logger()
from detectron2.config import get_cfg
import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.modeling import build_model
from detectron2.data.detection_utils import read_image
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
import numpy as np
import cv2
import os
import time
import pickle
import gradio as gr
import tqdm
import matplotlib.pyplot as plt
import io
from PIL import Image
torch.manual_seed(0)
np.random.seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
from models.regnet import build_regnet_fpn_backbone
import models.metadata as metadata
from utils_clustering import *
from base_cam import EigenCAM
from pytorch_grad_cam.utils.model_targets import FasterRCNNBoxScoreTarget
fullName2ab_dict = {'PASCAL-VOC':"voc", 'BDD100K':"bdd", 'KITTI':"kitti", 'Speed signs':"speed", 'NuScenes':"nu"}
ab2FullName_dict = {'voc':"PASCAL-VOC", 'bdd':"BDD100K", 'kitti':"KITTI", 'speed':"Speed signs", 'nu':"NuScenes"}
class Detectron2Monitor():
def __init__(self, id, backbone, confidence_threshold=0.05):
self.id, self.label_list = self._get_label_list(id)
self.backbone = backbone
self.confidence_threshold = confidence_threshold
self.cfg, self.device, self.model = self._get_model()
self.label_dict = {i:label for i, label in enumerate(self.label_list)}
self.eval_list = ["ID-voc-OOD-coco", "OOD-open", "voc-val"] if self.id == "voc" else ["ID-bdd-OOD-coco", "OOD-open", "voc-ood", f"{self.id}-val"]
MetadataCatalog.get("custom_dataset").set(thing_classes=self.label_list)
def _get_label_list(self, id):
id = fullName2ab_dict[id]
if id == 'voc':
label_list = metadata.VOC_THING_CLASSES
elif id == 'bdd':
label_list = metadata.BDD_THING_CLASSES
elif id == 'kitti':
label_list = metadata.KITTI_THING_CLASSES
elif id == 'speed' or id == 'prescan':
label_list = metadata.SPEED_THING_CLASSES
else:
label_list = metadata.NU_THING_CLASSES
return id, label_list
def _get_model(self):
cfg = get_cfg()
cfg.merge_from_file(f"models/configs/vanilla_{self.backbone}.yaml")
cfg.MODEL.WEIGHTS = f"models/weights/model_final_{self.backbone}_{self.id}.pth"
cfg.MODEL.DEVICE='cpu'
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(self.label_list)
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.confidence_threshold
model = build_model(cfg)
model.eval()
checkpointer = DetectionCheckpointer(model)
checkpointer.load(cfg.MODEL.WEIGHTS)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
return cfg, device, model
def _inference(self, model, inputs):
with torch.no_grad():
images = model.preprocess_image(inputs)
features = model.backbone(images.tensor)
proposals, _ = model.proposal_generator(images, features, None) # RPN
features_ = [features[f] for f in model.roi_heads.box_in_features]
box_features = model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals])
box_features = model.roi_heads.box_head(box_features) # features of all 1k candidates
predictions = model.roi_heads.box_predictor(box_features)
pred_instances, pred_inds = model.roi_heads.box_predictor.inference(predictions, proposals)
pred_instances = model.roi_heads.forward_with_given_boxes(features, pred_instances)
# output boxes, masks, scores, etc
pred_instances = model._postprocess(pred_instances, inputs, images.image_sizes) # scale box to orig size
# features of the proposed boxes
feats = box_features[pred_inds].cpu().numpy()
return pred_instances, feats
def _load_monitors(self, clustering_algo, nb_clusters, eps=5, min_samples=10):
if clustering_algo == "dbscan":
with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/eps{eps}_min_samples{min_samples}.pkl", 'rb') as f:
monitors_dict = pickle.load(f)
else:
with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/{nb_clusters}.pkl", 'rb') as f:
monitors_dict = pickle.load(f)
return monitors_dict
def _evaluate(self, clustering_algo, nb_clusters, eps, min_samples):
dataset_name = f"{self.id}-val"
with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_tp_dict.pickle', 'rb') as f:
feats_tp_dict = pickle.load(f)
with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_fp_dict.pickle', 'rb') as f:
feats_fp_dict = pickle.load(f)
monitors_dict = self._load_monitors(clustering_algo, nb_clusters, eps, min_samples)
# make verdicts on ID data
data_tp = []
data_fp = []
accept_sum = {"tp": 0, "fp": 0}
reject_sum = {"tp": 0, "fp": 0}
for label in tqdm.tqdm(self.label_list, desc="Evaluation on ID data"):
if label in monitors_dict:
verdict = monitors_dict[label].make_verdicts(feats_tp_dict[label])
data_tp.append([label, len(verdict), np.sum(verdict)/len(verdict)])
accept_sum["tp"] += np.sum(verdict)
reject_sum["tp"] += len(verdict) - np.sum(verdict)
verdict = monitors_dict[label].make_verdicts(feats_fp_dict[label])
data_fp.append([label, len(verdict), (len(verdict)-np.sum(verdict))/len(verdict)])
accept_sum["fp"] += np.sum(verdict)
reject_sum["fp"] += len(verdict) - np.sum(verdict)
TPR = round((accept_sum['tp'] / (reject_sum['tp'] + accept_sum['tp'])*100), 2)
FPR = round((accept_sum['fp'] / (reject_sum['fp'] + accept_sum['fp'])*100), 2)
id_name = ab2FullName_dict[self.id]
df_id = pd.DataFrame([[id_name, f"{TPR}%", f"{FPR}%"]], columns=["Dataset", "TPR", "FPR"])
data_ood = []
i = 0
self.eval_list.remove(dataset_name)
for dataset_name in tqdm.tqdm(self.eval_list, desc="Evaluation on OOD data"):
accept_sum = {"tp": 0, "fp": 0}
reject_sum = {"tp": 0, "fp": 0}
with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_fp_dict.pickle', 'rb') as f:
feats_fp_dict = pickle.load(f)
for label in self.label_list:
if label in monitors_dict:
verdict = monitors_dict[label].make_verdicts(feats_fp_dict[label])
accept_sum["fp"] += np.sum(verdict)
reject_sum["fp"] += len(verdict) - np.sum(verdict)
FPR = round((accept_sum['fp'] / (reject_sum['fp'] + accept_sum['fp'])*100), 2)
data_ood.append([dataset_name, str(FPR)+"%"])
i += 1
# prepare dataframes
df_ood = pd.DataFrame(data_ood, columns=["Dataset", "FPR"])
df_ood["Dataset"] = ["COCO", "Open Images"] if self.id == "voc" else ["COCO", "Open Images", "VOC-OOD"]
return df_id, df_ood
def _postprocess_cam(self, raw_cam, img_width, img_height):
cam_orig = np.sum(raw_cam, axis=0) # [H,W]
cam_orig = np.maximum(cam_orig, 0) # ReLU
cam_orig -= np.min(cam_orig)
cam_orig /= np.max(cam_orig)
cam = cv2.resize(cam_orig, (img_width, img_height))
return cam
def _fasterrcnn_reshape_transform(self, x):
target_size = x['p6'].size()[-2 : ]
activations = []
for key, value in x.items():
activations.append(torch.nn.functional.interpolate(torch.abs(value), target_size, mode='bilinear'))
activations = torch.cat(activations, axis=1)
return activations
def _get_input_dict(self, original_image):
height, width = original_image.shape[:2]
transform_gen = T.ResizeShortestEdge(
[self.cfg.INPUT.MIN_SIZE_TEST, self.cfg.INPUT.MIN_SIZE_TEST], self.cfg.INPUT.MAX_SIZE_TEST
)
image = transform_gen.get_transform(original_image).apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
return inputs
def get_output(self, monitors_dict, img):
image = read_image(img, format="BGR")
input_image_dict = [self._get_input_dict(image)]
pred_instances, feats = self._inference(self.model, input_image_dict)
detections = pred_instances[0]["instances"].to("cpu")
cls_idxs = detections.pred_classes.detach().numpy()
# get labels from class indices
labels = [self.label_dict[i] for i in cls_idxs]
# count values in labels, and return a dictionary
labels_count_dict = dict((i, labels.count(i)) for i in labels)
v = Visualizer(image[..., ::-1], MetadataCatalog.get("custom_dataset"), scale=1)
v = v.draw_instance_predictions(detections)
img_detection = v.get_image()
df = pd.DataFrame(list(labels_count_dict.items()), columns=['Object', 'Count'])
verdicts = []
for label, feat in zip(labels, feats):
verdict = monitors_dict[label].make_verdicts(feat[np.newaxis,:])[0]
verdicts.append(verdict)
detections_ood = detections[[i for i, x in enumerate(verdicts) if not x]]
detections_ood.pred_classes = torch.tensor([5]*len(detections_ood.pred_classes))
labels_ood = [label for label, verdict in zip(labels, verdicts) if not verdict]
verdicts_ood = ["Rejected"]*len(labels_ood)
df_verdict = pd.DataFrame(list(zip(labels_ood, verdicts_ood)), columns=['Object', 'Verdict'])
v = Visualizer(image[..., ::-1], MetadataCatalog.get("custom_dataset"), scale=1)
for box in detections_ood.pred_boxes.to('cpu'):
v.draw_box(box)
v.draw_text("OOD", tuple(box[:2].numpy()))
v = v.get_output()
img_ood = v.get_image()
pred_bboxes = detections.pred_boxes.tensor.numpy().astype(np.int32)
target_layers = [self.model.backbone]
targets = [FasterRCNNBoxScoreTarget(labels=labels, bounding_boxes=pred_bboxes)]
cam = EigenCAM(self.model,
target_layers,
use_cuda=False,
reshape_transform=self._fasterrcnn_reshape_transform)
grayscale_cam = cam(input_image_dict, targets)
cam = self._postprocess_cam(grayscale_cam, input_image_dict[0]["width"], input_image_dict[0]["height"])
plt.rcParams["figure.figsize"] = (30,10)
plt.imshow(img_detection[..., ::-1], interpolation='none')
plt.imshow(cam, cmap='jet', alpha=0.5)
plt.axis("off")
img_buff = io.BytesIO()
plt.savefig(img_buff, format='png', bbox_inches='tight', pad_inches=0)
img_cam = Image.open(img_buff)
image_dict = {}
image_dict["image"] = image
image_dict["cam"] = img_cam
image_dict["detection"] = img_detection
image_dict["verdict"] = img_ood
return image_dict, df, df_verdict |