Spaces:
Sleeping
Sleeping
File size: 16,532 Bytes
1215771 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import torch
from detectron2.utils.logger import setup_logger
setup_logger()
from detectron2.config import get_cfg
import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.modeling import build_model
import numpy as np
import cv2
import os
import argparse
import time
import h5py
import pickle
import gradio as gr
import fiftyone as fo
from fiftyone import ViewField as F
import tqdm
torch.manual_seed(0)
np.random.seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
from vos.detection.modeling.regnet import build_regnet_fpn_backbone
import core.metadata as metadata
from utils_clustering import *
fullName2ab_dict = {'PASCAL-VOC':"voc", 'BDD100K':"bdd", 'KITTI':"kitti", 'Speed signs':"speed", 'NuScenes':"nu"}
ab2FullName_dict = {'voc':"PASCAL-VOC", 'bdd':"BDD100K", 'kitti':"KITTI", 'speed':"Speed signs", 'nu':"NuScenes"}
class Detectron2Monitor():
def __init__(self, id, backbone):
self.id, self.label_list = self._get_label_list(id)
self.backbone = backbone
self.cfg, self.device, self.model = self._get_model()
self.label_dict = {i:label for i, label in enumerate(self.label_list)}
self.eval_list = ["ID-voc-OOD-coco", "OOD-open", "voc-val"] if self.id == "voc" else ["ID-bdd-OOD-coco", "OOD-open", "voc-ood", f"{self.id}-val"]
def _get_label_list(self, id):
id = fullName2ab_dict[id]
if id == 'voc':
label_list = metadata.VOC_THING_CLASSES
elif id == 'bdd':
label_list = metadata.BDD_THING_CLASSES
elif id == 'kitti':
label_list = metadata.KITTI_THING_CLASSES
elif id == 'speed' or id == 'prescan':
label_list = metadata.SPEED_THING_CLASSES
else:
label_list = metadata.NU_THING_CLASSES
return id, label_list
def _get_model(self):
cfg = get_cfg()
cfg.merge_from_file(f"/home/hugo/bdd100k-monitoring/monitoringObjectDetection/vanilla_{self.backbone}.yaml")
cfg.MODEL.WEIGHTS = f"models/model_final_{self.backbone}_{self.id}.pth"
cfg.MODEL.DEVICE='cuda'
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(self.label_list)
model = build_model(cfg)
model.eval()
checkpointer = DetectionCheckpointer(model)
checkpointer.load(cfg.MODEL.WEIGHTS)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
return cfg, device, model
def _inference(self, model, inputs):
with torch.no_grad():
images = model.preprocess_image(inputs)
features = model.backbone(images.tensor)
proposals, _ = model.proposal_generator(images, features, None) # RPN
features_ = [features[f] for f in model.roi_heads.box_in_features]
box_features = model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals])
box_features = model.roi_heads.box_head(box_features) # features of all 1k candidates
predictions = model.roi_heads.box_predictor(box_features)
pred_instances, pred_inds = model.roi_heads.box_predictor.inference(predictions, proposals)
pred_instances = model.roi_heads.forward_with_given_boxes(features, pred_instances)
# output boxes, masks, scores, etc
pred_instances = model._postprocess(pred_instances, inputs, images.image_sizes) # scale box to orig size
# features of the proposed boxes
feats = box_features[pred_inds].cpu().numpy()
return pred_instances, feats
def _save_features(self, feats_npy, dataset_view, file_path):
features_idx_dict = {cls:[] for cls in self.label_list}
for sample in tqdm.tqdm(dataset_view, desc="Saving features"):
for detection in sample.prediction.detections:
label_pred = detection.label
feature_idx = detection.feature_idx
features_idx_dict[label_pred].append(feature_idx)
feats_dict = {cls:feats_npy[features_idx_dict[cls]] for cls in self.label_list}
if not os.path.exists(file_path):
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, 'wb') as f:
pickle.dump(feats_dict, f)
def _extract(self, dataset_name):
dataset = fo.load_dataset(dataset_name)
aug = T.AugmentationList([T.ResizeShortestEdge(
[self.cfg.INPUT.MIN_SIZE_TEST, self.cfg.INPUT.MIN_SIZE_TEST], self.cfg.INPUT.MAX_SIZE_TEST),
]
)
i = 0
feats_list = []
for sample in tqdm.tqdm(dataset, desc="Extracting features"):
image = cv2.imread(sample.filepath)
height, width = image.shape[:2]
input = T.AugInput(image)
transform = aug(input)
image = input.image
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)).to(self.device)
inputs = [{"image": image, "height": height, "width": width}]
preds, feats = self._inference(self.model, inputs)
boxes = preds[0]["instances"].pred_boxes.tensor.cpu().detach().numpy()
classes = preds[0]["instances"].pred_classes.cpu().detach().numpy()
scores = preds[0]["instances"].scores.cpu().detach().numpy()
feats_list.extend(feats)
if i == 1000:
np.save('feats.npy', feats_list)
detections = []
for score, label, box in zip(scores, classes, boxes):
x1, y1, x2, y2 = box
rel_box = [x1/width, y1/height, (x2 - x1) / width, (y2 - y1) / height]
label = self.label_dict[label]
detections.append(
fo.Detection(
label=label,
bounding_box=rel_box,
confidence=score,
feature_idx=i
),
)
i += 1
sample["prediction"] = fo.Detections(detections=detections)
sample.save()
feats_npy = np.array(feats_list)
with h5py.File(f'feats_{self.id}-train_{self.backbone}.h5', 'w') as f:
dset = f.create_dataset(f"feats_{self.id}-train_{self.backbone}", data=feats_npy)
if dataset.name.endswith(("train", "val")):
results = dataset.evaluate_detections(
"prediction",
gt_field="detections",
eval_key="eval",
compute_mAP=True)
# results.print_report()
# print("mAP: ", results.mAP())
tp_prediction_view = dataset.filter_labels("prediction", F("eval") == "tp")
self._save_features(feats_npy, tp_prediction_view, f"train_feats/{self.id}/{self.backbone}/{self.id}-train_feats_tp_dict.pickle")
if dataset.name.endswith("val"):
fp_prediction_view = dataset.filter_labels("prediction", F("eval") == "fp")
self._save_features(feats_npy, fp_prediction_view, f"val_feats/{self.id}/{self.backbone}/{self.dataset_name}_feats_fp_dict.pickle")
else:
self._save_features(feats_npy, dataset, f"val_feats/{self.id}/{self.backbone}/{self.dataset_name}_feats_fp_dict.pickle")
def _construct(self, clustering_algo, nb_clusters=4, eps=5, min_samples=10):
with open(f"/home/hugo/bdd100k-monitoring/train_feats/{self.id}/{self.backbone}/{self.id}-train_feats_tp_dict.pickle", 'rb') as f:
feats_dict = pickle.load(f)
dir_path = f'monitors/{self.id}/{self.backbone}/{clustering_algo}'
if not os.path.exists(dir_path):
os.makedirs(dir_path)
monitor_dict = {}
for class_, fts in tqdm.tqdm(feats_dict.items(), desc="Constructing monitors"):
if clustering_algo == "kmeans":
clusters = k_means_cluster(fts, nb_clusters)
elif clustering_algo == "spectral":
clusters = spectral_cluster(fts, nb_clusters)
elif clustering_algo == "dbscan":
clusters = dbscan_cluster(fts, eps, min_samples)
dims = fts.shape[1]
box_list = []
for cl_id, points in clusters.items():
box = Box()
box.build(dims, points)
box_list.append(box)
monitor = Monitor(good_ref=box_list)
monitor_dict[class_] = monitor
if clustering_algo == "dbscan":
with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/eps{eps}_min_samples{min_samples}.pkl" , 'wb') as f:
pickle.dump(monitor_dict, f)
else:
with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/{nb_clusters}.pkl" , 'wb') as f:
pickle.dump(monitor_dict, f)
def _load_monitors(self, clustering_algo, nb_clusters, eps=5, min_samples=10):
if clustering_algo == "dbscan":
with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/eps{eps}_min_samples{min_samples}.pkl", 'rb') as f:
monitors_dict = pickle.load(f)
else:
with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/{nb_clusters}.pkl", 'rb') as f:
monitors_dict = pickle.load(f)
return monitors_dict
def _evaluate(self, monitors_dict):
dataset_name = f"{self.id}-val"
with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_tp_dict.pickle', 'rb') as f:
feats_tp_dict = pickle.load(f)
with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_fp_dict.pickle', 'rb') as f:
feats_fp_dict = pickle.load(f)
# monitors_dict = self._load_monitors(clustering_algo, nb_clusters, eps, min_samples)
# make verdicts on ID data
data_tp = []
data_fp = []
accept_sum = {"tp": 0, "fp": 0}
reject_sum = {"tp": 0, "fp": 0}
for label in tqdm.tqdm(self.label_list, desc="Evaluation on ID data"):
if label in monitors_dict:
verdict = monitors_dict[label].make_verdicts(feats_tp_dict[label])
data_tp.append([label, len(verdict), np.sum(verdict)/len(verdict)])
accept_sum["tp"] += np.sum(verdict)
reject_sum["tp"] += len(verdict) - np.sum(verdict)
verdict = monitors_dict[label].make_verdicts(feats_fp_dict[label])
data_fp.append([label, len(verdict), (len(verdict)-np.sum(verdict))/len(verdict)])
accept_sum["fp"] += np.sum(verdict)
reject_sum["fp"] += len(verdict) - np.sum(verdict)
TPR = round((accept_sum['tp'] / (reject_sum['tp'] + accept_sum['tp'])*100), 2)
FPR = round((accept_sum['fp'] / (reject_sum['fp'] + accept_sum['fp'])*100), 2)
id_name = ab2FullName_dict[self.id]
df_id = pd.DataFrame([[id_name, f"{TPR}%", f"{FPR}%"]], columns=["Dataset", "TPR", "FPR"])
data_ood = []
i = 0
self.eval_list.remove(dataset_name)
for dataset_name in tqdm.tqdm(self.eval_list, desc="Evaluation on OOD data"):
accept_sum = {"tp": 0, "fp": 0}
reject_sum = {"tp": 0, "fp": 0}
with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_fp_dict.pickle', 'rb') as f:
feats_fp_dict = pickle.load(f)
for label in self.label_list:
if label in monitors_dict:
verdict = monitors_dict[label].make_verdicts(feats_fp_dict[label])
accept_sum["fp"] += np.sum(verdict)
reject_sum["fp"] += len(verdict) - np.sum(verdict)
FPR = round((accept_sum['fp'] / (reject_sum['fp'] + accept_sum['fp'])*100), 2)
data_ood.append([dataset_name, str(FPR)+"%"])
i += 1
# prepare dataframes
df_ood = pd.DataFrame(data_ood, columns=["Dataset", "FPR"])
df_ood["Dataset"] = ["COCO", "Open Images"] if self.id == "voc" else ["COCO", "Open Images", "VOC-OOD"]
return df_id, df_ood
def _enlarge(self, monitors_dict, delta):
for label, monitor in monitors_dict.items():
for i in range(len(monitor.good_ref)):
monitor.good_ref[i].ivals = monitor.good_ref[i].ivals*np.array([1-delta, 1+delta])
monitors_dict[label] = monitor
return monitors_dict
def fx_gradio(id, backbone, progress=gr.Progress(track_tqdm=True)):
detectron2monitor = Detectron2Monitor(id, backbone)
t0 = time.time()
detectron2monitor._extract(f"{detectron2monitor.id}-train")
minutes, seconds = divmod(time.time()-t0, 60)
return f"Total feature extraction time: {int(minutes):02d}:{int(seconds):02d}"
def construct_gradio(id, backbone, clustering_algo, nb_clusters, eps, min_samples, progress=gr.Progress(track_tqdm=True)):
detection2monitor = Detectron2Monitor(id, backbone)
t0 = time.time()
detection2monitor._construct(clustering_algo, nb_clusters, eps, min_samples)
minutes, seconds = divmod(time.time()-t0, 60)
return f"Total monitor construction time: {int(minutes):02d}:{int(seconds):02d}"
def fx_eval_gradio(id, backbone, progress=gr.Progress(track_tqdm=True)):
detectron2monitor = Detectron2Monitor(id, backbone)
t0 = time.time()
for dataset_name in tqdm.tqdm(detectron2monitor.eval_list, desc="Evaluation data preparation"):
detectron2monitor._extract(dataset_name)
minutes, seconds = divmod(time.time()-t0, 60)
return f"Total evaluation data preparation time: {int(minutes):02d}:{int(seconds):02d}"
def eval_gradio(id, backbone, clustering_algo, nb_clusters, eps, min_samples, progress=gr.Progress(track_tqdm=True)):
detectron2monitor = Detectron2Monitor(id, backbone)
monitors_dict = detectron2monitor._load_monitors(clustering_algo, nb_clusters, eps, min_samples)
df_id, df_ood = detectron2monitor._evaluate(monitors_dict)
return df_id, df_ood
def enlarge_gradio(id, backbone, clustering_algo, nb_clusters, eps, min_samples, delta, progress=gr.Progress(track_tqdm=True)):
detectron2monitor = Detectron2Monitor(id, backbone)
monitors_dict = detectron2monitor._load_monitors(clustering_algo, nb_clusters, eps, min_samples)
monitors_dict_enlarge = detectron2monitor._enlarge(monitors_dict, delta)
df_id, df_ood = detectron2monitor._evaluate(monitors_dict_enlarge)
# if clustering_algo == "dbscan":
# with open(f"monitors/{id}/{backbone}/{clustering_algo}/eps{eps}_min_samples{min_samples}_delta{delta}.pkl" , 'wb') as f:
# pickle.dump(monitors_dict, f)
# else:
# with open(f"monitors/{id}/{backbone}/{clustering_algo}/{nb_clusters}_delta{delta}.pkl" , 'wb') as f:
# pickle.dump(monitors_dict, f)
# return f"Monitors enlarged by {delta*100}%"
return df_id, df_ood
with gr.Blocks(theme='soft') as demo:
gr.Markdown("# Monitor enlargment utility")
id = gr.Radio(['PASCAL-VOC', 'BDD100K', 'KITTI', 'Speed signs', 'NuScenes'], label="Dataset")
backbone = gr.Radio(['regnet', 'resnet'], label="Backbone")
clustering_algo = gr.Dropdown(['kmeans', 'spectral', 'dbscan', 'opticals'], label="Clustering algorithm")
with gr.Row():
nb_clusters = gr.Number(value=5, label="Number of clusters", precision=0)
eps = gr.Number(value=5, label="Epsilon", precision=0)
min_samples = gr.Number(value=10, label="Minimum samples", precision=0)
delta = gr.Slider(minimum=0, maximum=2.5, step=0.05, label="Delta")
with gr.Row():
with gr.Group("Original monitors"):
eval_id = gr.Dataframe(type="pandas", label="ID performance")
eavl_ood = gr.Dataframe(type="pandas", label="OOD performance")
eval_btn = gr.Button("Monitor Evaluation")
with gr.Column("Enlarged monitors"):
eval_id2 = gr.Dataframe(type="pandas", label="ID performance")
eavl_ood2 = gr.Dataframe(type="pandas", label="OOD performance")
enlarge_btn = gr.Button("Monitor Enlargement")
eval_btn.click(fn=eval_gradio, inputs=[id, backbone, clustering_algo, nb_clusters, eps, min_samples], outputs=[eval_id, eavl_ood])
enlarge_btn.click(fn=enlarge_gradio, inputs=[id, backbone, clustering_algo, nb_clusters, eps, min_samples, delta], outputs=[eval_id2, eavl_ood2])
demo.queue().launch()
|