File size: 16,532 Bytes
1215771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import torch
from detectron2.utils.logger import setup_logger
setup_logger()

from detectron2.config import get_cfg
import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.modeling import build_model


import numpy as np
import cv2
import os
import argparse
import time
import h5py
import pickle
import gradio as gr
import fiftyone as fo
from fiftyone import ViewField as F
import tqdm
torch.manual_seed(0)
np.random.seed(0)

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

from vos.detection.modeling.regnet import build_regnet_fpn_backbone
import core.metadata as metadata

from utils_clustering import *

fullName2ab_dict = {'PASCAL-VOC':"voc", 'BDD100K':"bdd", 'KITTI':"kitti", 'Speed signs':"speed", 'NuScenes':"nu"}
ab2FullName_dict = {'voc':"PASCAL-VOC", 'bdd':"BDD100K", 'kitti':"KITTI", 'speed':"Speed signs", 'nu':"NuScenes"}
class Detectron2Monitor():
    def __init__(self, id, backbone):
        self.id, self.label_list = self._get_label_list(id)
        self.backbone = backbone
        self.cfg, self.device, self.model = self._get_model()
        self.label_dict = {i:label for i, label in enumerate(self.label_list)}
        self.eval_list = ["ID-voc-OOD-coco", "OOD-open", "voc-val"] if self.id == "voc" else ["ID-bdd-OOD-coco", "OOD-open", "voc-ood", f"{self.id}-val"]
    
    def _get_label_list(self, id):
        id = fullName2ab_dict[id]
        if id == 'voc':      
            label_list = metadata.VOC_THING_CLASSES
        elif id == 'bdd':
            label_list = metadata.BDD_THING_CLASSES
        elif id == 'kitti':
            label_list = metadata.KITTI_THING_CLASSES
        elif id == 'speed' or id == 'prescan':
            label_list = metadata.SPEED_THING_CLASSES
        else:
            label_list = metadata.NU_THING_CLASSES
        return id, label_list

    def _get_model(self):
        cfg = get_cfg()
        cfg.merge_from_file(f"/home/hugo/bdd100k-monitoring/monitoringObjectDetection/vanilla_{self.backbone}.yaml")
        cfg.MODEL.WEIGHTS = f"models/model_final_{self.backbone}_{self.id}.pth" 
        cfg.MODEL.DEVICE='cuda'
        cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(self.label_list)
        model = build_model(cfg)
        model.eval()
        checkpointer = DetectionCheckpointer(model)
        checkpointer.load(cfg.MODEL.WEIGHTS)
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = model.to(device)
        return cfg, device, model

    def _inference(self, model, inputs):
        with torch.no_grad():
            images = model.preprocess_image(inputs)  
            features = model.backbone(images.tensor)  
            proposals, _ = model.proposal_generator(images, features, None)  # RPN

            features_ = [features[f] for f in model.roi_heads.box_in_features]
            box_features = model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals])
            box_features = model.roi_heads.box_head(box_features)  # features of all 1k candidates
            predictions = model.roi_heads.box_predictor(box_features)
            pred_instances, pred_inds = model.roi_heads.box_predictor.inference(predictions, proposals)
            pred_instances = model.roi_heads.forward_with_given_boxes(features, pred_instances)

            # output boxes, masks, scores, etc
            pred_instances = model._postprocess(pred_instances, inputs, images.image_sizes)  # scale box to orig size
            # features of the proposed boxes
            feats = box_features[pred_inds].cpu().numpy()   
        return pred_instances, feats

    def _save_features(self, feats_npy, dataset_view, file_path):
        features_idx_dict = {cls:[] for cls in self.label_list}
        for sample in tqdm.tqdm(dataset_view, desc="Saving features"):
            for detection in sample.prediction.detections:
                label_pred = detection.label
                feature_idx = detection.feature_idx
                features_idx_dict[label_pred].append(feature_idx)
        feats_dict = {cls:feats_npy[features_idx_dict[cls]] for cls in self.label_list}
        if not os.path.exists(file_path):
            os.makedirs(os.path.dirname(file_path), exist_ok=True)
        with open(file_path, 'wb') as f:
                pickle.dump(feats_dict, f)

    def _extract(self, dataset_name):
        dataset = fo.load_dataset(dataset_name)
        aug = T.AugmentationList([T.ResizeShortestEdge(
                [self.cfg.INPUT.MIN_SIZE_TEST, self.cfg.INPUT.MIN_SIZE_TEST], self.cfg.INPUT.MAX_SIZE_TEST),
            ]
        )
        i = 0
        feats_list = []
        for sample in tqdm.tqdm(dataset, desc="Extracting features"):
            image = cv2.imread(sample.filepath)
            height, width = image.shape[:2]
            input = T.AugInput(image)
            transform = aug(input)
            image = input.image
            image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)).to(self.device)
            inputs = [{"image": image, "height": height, "width": width}]

            preds, feats = self._inference(self.model, inputs)
            boxes = preds[0]["instances"].pred_boxes.tensor.cpu().detach().numpy()
            classes = preds[0]["instances"].pred_classes.cpu().detach().numpy()
            scores = preds[0]["instances"].scores.cpu().detach().numpy()
            
            feats_list.extend(feats)
            if i == 1000:
                np.save('feats.npy', feats_list)
            
            detections = []
            for score, label, box in zip(scores, classes, boxes):
                x1, y1, x2, y2 = box
                rel_box = [x1/width, y1/height, (x2 - x1) / width, (y2 - y1) / height]
                label = self.label_dict[label]
                detections.append(
                    fo.Detection(
                        label=label,
                        bounding_box=rel_box,
                        confidence=score,
                        feature_idx=i
                    ),
                )
                i += 1
            sample["prediction"] = fo.Detections(detections=detections)
            sample.save()
        feats_npy = np.array(feats_list)
        with h5py.File(f'feats_{self.id}-train_{self.backbone}.h5', 'w') as f:
            dset = f.create_dataset(f"feats_{self.id}-train_{self.backbone}", data=feats_npy)
        if dataset.name.endswith(("train", "val")):
            results = dataset.evaluate_detections(
                "prediction",
                gt_field="detections",
                eval_key="eval",
                compute_mAP=True)
            # results.print_report()
            # print("mAP: ", results.mAP())
            tp_prediction_view = dataset.filter_labels("prediction", F("eval") == "tp")
            self._save_features(feats_npy, tp_prediction_view, f"train_feats/{self.id}/{self.backbone}/{self.id}-train_feats_tp_dict.pickle")  
            if dataset.name.endswith("val"):
                fp_prediction_view = dataset.filter_labels("prediction", F("eval") == "fp")
                self._save_features(feats_npy, fp_prediction_view, f"val_feats/{self.id}/{self.backbone}/{self.dataset_name}_feats_fp_dict.pickle")
        else:
            self._save_features(feats_npy, dataset, f"val_feats/{self.id}/{self.backbone}/{self.dataset_name}_feats_fp_dict.pickle")  
    
    def _construct(self, clustering_algo, nb_clusters=4, eps=5, min_samples=10):
        with open(f"/home/hugo/bdd100k-monitoring/train_feats/{self.id}/{self.backbone}/{self.id}-train_feats_tp_dict.pickle", 'rb') as f:
            feats_dict = pickle.load(f)
        dir_path = f'monitors/{self.id}/{self.backbone}/{clustering_algo}'
        if not os.path.exists(dir_path):
            os.makedirs(dir_path)
        monitor_dict = {}   
        for class_, fts in tqdm.tqdm(feats_dict.items(), desc="Constructing monitors"):
            if clustering_algo == "kmeans":
                clusters = k_means_cluster(fts, nb_clusters)
            elif clustering_algo == "spectral":
                clusters = spectral_cluster(fts, nb_clusters)
            elif clustering_algo == "dbscan":
                clusters = dbscan_cluster(fts, eps, min_samples)
            dims = fts.shape[1]
            box_list = []
            for cl_id, points in clusters.items():
                box = Box()
                box.build(dims, points)
                box_list.append(box)
            monitor = Monitor(good_ref=box_list)
            monitor_dict[class_] = monitor
        if clustering_algo == "dbscan":
            with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/eps{eps}_min_samples{min_samples}.pkl" , 'wb') as f:
                pickle.dump(monitor_dict, f)
        else:
            with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/{nb_clusters}.pkl" , 'wb') as f:
                pickle.dump(monitor_dict, f)

    def _load_monitors(self, clustering_algo, nb_clusters, eps=5, min_samples=10):
        if clustering_algo == "dbscan":
            with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/eps{eps}_min_samples{min_samples}.pkl", 'rb') as f:
                monitors_dict = pickle.load(f)  
        else:
            with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/{nb_clusters}.pkl", 'rb') as f:
                monitors_dict = pickle.load(f)
        return monitors_dict
    
    def _evaluate(self, monitors_dict):
        dataset_name = f"{self.id}-val"
        with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_tp_dict.pickle', 'rb') as f:
            feats_tp_dict = pickle.load(f)
        with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_fp_dict.pickle', 'rb') as f:
            feats_fp_dict = pickle.load(f)
        # monitors_dict = self._load_monitors(clustering_algo, nb_clusters, eps, min_samples)
        # make verdicts on ID data
        data_tp = []
        data_fp = []
        accept_sum = {"tp": 0, "fp": 0}
        reject_sum = {"tp": 0, "fp": 0}
        for label in tqdm.tqdm(self.label_list, desc="Evaluation on ID data"): 
            if label in monitors_dict:    
                verdict = monitors_dict[label].make_verdicts(feats_tp_dict[label])
                data_tp.append([label, len(verdict), np.sum(verdict)/len(verdict)])
                accept_sum["tp"] += np.sum(verdict)
                reject_sum["tp"] += len(verdict) - np.sum(verdict)   
                verdict = monitors_dict[label].make_verdicts(feats_fp_dict[label])
                data_fp.append([label, len(verdict), (len(verdict)-np.sum(verdict))/len(verdict)])
                accept_sum["fp"] += np.sum(verdict)
                reject_sum["fp"] += len(verdict) - np.sum(verdict)
        TPR = round((accept_sum['tp'] / (reject_sum['tp'] + accept_sum['tp'])*100), 2)
        FPR =  round((accept_sum['fp'] / (reject_sum['fp'] + accept_sum['fp'])*100), 2)
        id_name = ab2FullName_dict[self.id]
        df_id = pd.DataFrame([[id_name, f"{TPR}%", f"{FPR}%"]], columns=["Dataset", "TPR", "FPR"])
        
        data_ood = []
        i = 0
        self.eval_list.remove(dataset_name)
        for dataset_name in tqdm.tqdm(self.eval_list, desc="Evaluation on OOD data"):
            accept_sum = {"tp": 0, "fp": 0}
            reject_sum = {"tp": 0, "fp": 0}
            with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_fp_dict.pickle', 'rb') as f:
                feats_fp_dict = pickle.load(f)
            for label in self.label_list:
                if label in monitors_dict:
                    verdict = monitors_dict[label].make_verdicts(feats_fp_dict[label])
                    accept_sum["fp"] += np.sum(verdict)
                    reject_sum["fp"] += len(verdict) - np.sum(verdict)
            FPR =  round((accept_sum['fp'] / (reject_sum['fp'] + accept_sum['fp'])*100), 2)
            data_ood.append([dataset_name, str(FPR)+"%"])
            i += 1
        # prepare dataframes
        df_ood = pd.DataFrame(data_ood, columns=["Dataset", "FPR"])
        df_ood["Dataset"] = ["COCO", "Open Images"] if self.id == "voc" else ["COCO", "Open Images", "VOC-OOD"]
        return df_id, df_ood

    def _enlarge(self, monitors_dict, delta):
        for label, monitor in monitors_dict.items():
            for i in range(len(monitor.good_ref)):
                monitor.good_ref[i].ivals = monitor.good_ref[i].ivals*np.array([1-delta, 1+delta])
            monitors_dict[label] = monitor
        return monitors_dict

def fx_gradio(id, backbone, progress=gr.Progress(track_tqdm=True)):
    detectron2monitor = Detectron2Monitor(id, backbone)
    t0 = time.time()
    detectron2monitor._extract(f"{detectron2monitor.id}-train")
    minutes, seconds = divmod(time.time()-t0, 60)
    return f"Total feature extraction time: {int(minutes):02d}:{int(seconds):02d}"

def construct_gradio(id, backbone, clustering_algo, nb_clusters, eps, min_samples, progress=gr.Progress(track_tqdm=True)):
    detection2monitor = Detectron2Monitor(id, backbone)
    t0 = time.time()
    detection2monitor._construct(clustering_algo, nb_clusters, eps, min_samples)
    minutes, seconds = divmod(time.time()-t0, 60)
    return f"Total monitor construction time: {int(minutes):02d}:{int(seconds):02d}"

def fx_eval_gradio(id, backbone, progress=gr.Progress(track_tqdm=True)):
    detectron2monitor = Detectron2Monitor(id, backbone)
    t0 = time.time()
    for dataset_name in tqdm.tqdm(detectron2monitor.eval_list, desc="Evaluation data preparation"):
        detectron2monitor._extract(dataset_name)
    minutes, seconds = divmod(time.time()-t0, 60)
    return f"Total evaluation data preparation time: {int(minutes):02d}:{int(seconds):02d}"

def eval_gradio(id, backbone, clustering_algo, nb_clusters, eps, min_samples, progress=gr.Progress(track_tqdm=True)):
    detectron2monitor = Detectron2Monitor(id, backbone)
    monitors_dict = detectron2monitor._load_monitors(clustering_algo, nb_clusters, eps, min_samples)
    df_id, df_ood = detectron2monitor._evaluate(monitors_dict)
    return df_id, df_ood

def enlarge_gradio(id, backbone, clustering_algo, nb_clusters, eps, min_samples, delta, progress=gr.Progress(track_tqdm=True)):
    detectron2monitor = Detectron2Monitor(id, backbone)
    monitors_dict = detectron2monitor._load_monitors(clustering_algo, nb_clusters, eps, min_samples)
    monitors_dict_enlarge = detectron2monitor._enlarge(monitors_dict, delta)
    df_id, df_ood = detectron2monitor._evaluate(monitors_dict_enlarge)
    # if clustering_algo == "dbscan":
    #     with open(f"monitors/{id}/{backbone}/{clustering_algo}/eps{eps}_min_samples{min_samples}_delta{delta}.pkl" , 'wb') as f:
    #         pickle.dump(monitors_dict, f)
    # else:
    #     with open(f"monitors/{id}/{backbone}/{clustering_algo}/{nb_clusters}_delta{delta}.pkl" , 'wb') as f:
    #         pickle.dump(monitors_dict, f)
    # return f"Monitors enlarged by {delta*100}%"
    return df_id, df_ood
with gr.Blocks(theme='soft') as demo:
    gr.Markdown("# Monitor enlargment utility")
    id = gr.Radio(['PASCAL-VOC', 'BDD100K', 'KITTI', 'Speed signs', 'NuScenes'], label="Dataset")
    backbone = gr.Radio(['regnet', 'resnet'], label="Backbone")
    clustering_algo = gr.Dropdown(['kmeans', 'spectral', 'dbscan', 'opticals'], label="Clustering algorithm")
    with gr.Row():
        nb_clusters = gr.Number(value=5, label="Number of clusters", precision=0)
        eps = gr.Number(value=5, label="Epsilon", precision=0)
        min_samples = gr.Number(value=10, label="Minimum samples", precision=0)
    delta = gr.Slider(minimum=0, maximum=2.5, step=0.05, label="Delta")
    with gr.Row():
        with gr.Group("Original monitors"):
            eval_id = gr.Dataframe(type="pandas", label="ID performance")
            eavl_ood = gr.Dataframe(type="pandas", label="OOD performance")
            eval_btn = gr.Button("Monitor Evaluation")
        with gr.Column("Enlarged monitors"):
            eval_id2 = gr.Dataframe(type="pandas", label="ID performance")
            eavl_ood2 = gr.Dataframe(type="pandas", label="OOD performance")
            enlarge_btn = gr.Button("Monitor Enlargement")
    eval_btn.click(fn=eval_gradio, inputs=[id, backbone, clustering_algo, nb_clusters, eps, min_samples], outputs=[eval_id, eavl_ood])
    enlarge_btn.click(fn=enlarge_gradio, inputs=[id, backbone, clustering_algo, nb_clusters, eps, min_samples, delta], outputs=[eval_id2, eavl_ood2])

demo.queue().launch()