Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
Implementation of RegNet models from :paper:`dds` and :paper:`scaling`. | |
This code is adapted from https://github.com/facebookresearch/pycls with minimal modifications. | |
Some code duplication exists between RegNet and ResNets (e.g., ResStem) in order to simplify | |
model loading. | |
""" | |
import numpy as np | |
from torch import nn | |
from detectron2.layers import CNNBlockBase, ShapeSpec, get_norm | |
from detectron2.modeling.backbone import Backbone | |
__all__ = [ | |
"AnyNet", | |
"RegNet", | |
"ResStem", | |
"SimpleStem", | |
"VanillaBlock", | |
"ResBasicBlock", | |
"ResBottleneckBlock", | |
] | |
def conv2d(w_in, w_out, k, *, stride=1, groups=1, bias=False): | |
"""Helper for building a conv2d layer.""" | |
assert k % 2 == 1, "Only odd size kernels supported to avoid padding issues." | |
s, p, g, b = stride, (k - 1) // 2, groups, bias | |
return nn.Conv2d(w_in, w_out, k, stride=s, padding=p, groups=g, bias=b) | |
def gap2d(): | |
"""Helper for building a global average pooling layer.""" | |
return nn.AdaptiveAvgPool2d((1, 1)) | |
def pool2d(k, *, stride=1): | |
"""Helper for building a pool2d layer.""" | |
assert k % 2 == 1, "Only odd size kernels supported to avoid padding issues." | |
return nn.MaxPool2d(k, stride=stride, padding=(k - 1) // 2) | |
def init_weights(m): | |
"""Performs ResNet-style weight initialization.""" | |
if isinstance(m, nn.Conv2d): | |
# Note that there is no bias due to BN | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(mean=0.0, std=np.sqrt(2.0 / fan_out)) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1.0) | |
m.bias.data.zero_() | |
elif isinstance(m, nn.Linear): | |
m.weight.data.normal_(mean=0.0, std=0.01) | |
m.bias.data.zero_() | |
class ResStem(CNNBlockBase): | |
"""ResNet stem for ImageNet: 7x7, BN, AF, MaxPool.""" | |
def __init__(self, w_in, w_out, norm, activation_class): | |
super().__init__(w_in, w_out, 4) | |
self.conv = conv2d(w_in, w_out, 7, stride=2) | |
self.bn = get_norm(norm, w_out) | |
self.af = activation_class() | |
self.pool = pool2d(3, stride=2) | |
def forward(self, x): | |
for layer in self.children(): | |
x = layer(x) | |
return x | |
class SimpleStem(CNNBlockBase): | |
"""Simple stem for ImageNet: 3x3, BN, AF.""" | |
def __init__(self, w_in, w_out, norm, activation_class): | |
super().__init__(w_in, w_out, 2) | |
self.conv = conv2d(w_in, w_out, 3, stride=2) | |
self.bn = get_norm(norm, w_out) | |
self.af = activation_class() | |
def forward(self, x): | |
for layer in self.children(): | |
x = layer(x) | |
return x | |
class SE(nn.Module): | |
"""Squeeze-and-Excitation (SE) block: AvgPool, FC, Act, FC, Sigmoid.""" | |
def __init__(self, w_in, w_se, activation_class): | |
super().__init__() | |
self.avg_pool = gap2d() | |
self.f_ex = nn.Sequential( | |
conv2d(w_in, w_se, 1, bias=True), | |
activation_class(), | |
conv2d(w_se, w_in, 1, bias=True), | |
nn.Sigmoid(), | |
) | |
def forward(self, x): | |
return x * self.f_ex(self.avg_pool(x)) | |
class VanillaBlock(CNNBlockBase): | |
"""Vanilla block: [3x3 conv, BN, Relu] x2.""" | |
def __init__(self, w_in, w_out, stride, norm, activation_class, _params): | |
super().__init__(w_in, w_out, stride) | |
self.a = conv2d(w_in, w_out, 3, stride=stride) | |
self.a_bn = get_norm(norm, w_out) | |
self.a_af = activation_class() | |
self.b = conv2d(w_out, w_out, 3) | |
self.b_bn = get_norm(norm, w_out) | |
self.b_af = activation_class() | |
def forward(self, x): | |
for layer in self.children(): | |
x = layer(x) | |
return x | |
class BasicTransform(nn.Module): | |
"""Basic transformation: [3x3 conv, BN, Relu] x2.""" | |
def __init__(self, w_in, w_out, stride, norm, activation_class, _params): | |
super().__init__() | |
self.a = conv2d(w_in, w_out, 3, stride=stride) | |
self.a_bn = get_norm(norm, w_out) | |
self.a_af = activation_class() | |
self.b = conv2d(w_out, w_out, 3) | |
self.b_bn = get_norm(norm, w_out) | |
self.b_bn.final_bn = True | |
def forward(self, x): | |
for layer in self.children(): | |
x = layer(x) | |
return x | |
class ResBasicBlock(CNNBlockBase): | |
"""Residual basic block: x + f(x), f = basic transform.""" | |
def __init__(self, w_in, w_out, stride, norm, activation_class, params): | |
super().__init__(w_in, w_out, stride) | |
self.proj, self.bn = None, None | |
if (w_in != w_out) or (stride != 1): | |
self.proj = conv2d(w_in, w_out, 1, stride=stride) | |
self.bn = get_norm(norm, w_out) | |
self.f = BasicTransform(w_in, w_out, stride, norm, activation_class, params) | |
self.af = activation_class() | |
def forward(self, x): | |
x_p = self.bn(self.proj(x)) if self.proj else x | |
return self.af(x_p + self.f(x)) | |
class BottleneckTransform(nn.Module): | |
"""Bottleneck transformation: 1x1, 3x3 [+SE], 1x1.""" | |
def __init__(self, w_in, w_out, stride, norm, activation_class, params): | |
super().__init__() | |
w_b = int(round(w_out * params["bot_mul"])) | |
w_se = int(round(w_in * params["se_r"])) | |
groups = w_b // params["group_w"] | |
self.a = conv2d(w_in, w_b, 1) | |
self.a_bn = get_norm(norm, w_b) | |
self.a_af = activation_class() | |
self.b = conv2d(w_b, w_b, 3, stride=stride, groups=groups) | |
self.b_bn = get_norm(norm, w_b) | |
self.b_af = activation_class() | |
self.se = SE(w_b, w_se, activation_class) if w_se else None | |
self.c = conv2d(w_b, w_out, 1) | |
self.c_bn = get_norm(norm, w_out) | |
self.c_bn.final_bn = True | |
def forward(self, x): | |
for layer in self.children(): | |
x = layer(x) | |
return x | |
class ResBottleneckBlock(CNNBlockBase): | |
"""Residual bottleneck block: x + f(x), f = bottleneck transform.""" | |
def __init__(self, w_in, w_out, stride, norm, activation_class, params): | |
super().__init__(w_in, w_out, stride) | |
self.proj, self.bn = None, None | |
if (w_in != w_out) or (stride != 1): | |
self.proj = conv2d(w_in, w_out, 1, stride=stride) | |
self.bn = get_norm(norm, w_out) | |
self.f = BottleneckTransform(w_in, w_out, stride, norm, activation_class, params) | |
self.af = activation_class() | |
def forward(self, x): | |
x_p = self.bn(self.proj(x)) if self.proj else x | |
return self.af(x_p + self.f(x)) | |
class AnyStage(nn.Module): | |
"""AnyNet stage (sequence of blocks w/ the same output shape).""" | |
def __init__(self, w_in, w_out, stride, d, block_class, norm, activation_class, params): | |
super().__init__() | |
for i in range(d): | |
block = block_class(w_in, w_out, stride, norm, activation_class, params) | |
self.add_module("b{}".format(i + 1), block) | |
stride, w_in = 1, w_out | |
def forward(self, x): | |
for block in self.children(): | |
x = block(x) | |
return x | |
class AnyNet(Backbone): | |
"""AnyNet model. See :paper:`dds`.""" | |
def __init__( | |
self, | |
*, | |
stem_class, | |
stem_width, | |
block_class, | |
depths, | |
widths, | |
group_widths, | |
strides, | |
bottleneck_ratios, | |
se_ratio, | |
activation_class, | |
freeze_at=0, | |
norm="BN", | |
out_features=None, | |
): | |
""" | |
Args: | |
stem_class (callable): A callable taking 4 arguments (channels in, channels out, | |
normalization, callable returning an activation function) that returns another | |
callable implementing the stem module. | |
stem_width (int): The number of output channels that the stem produces. | |
block_class (callable): A callable taking 6 arguments (channels in, channels out, | |
stride, normalization, callable returning an activation function, a dict of | |
block-specific parameters) that returns another callable implementing the repeated | |
block module. | |
depths (list[int]): Number of blocks in each stage. | |
widths (list[int]): For each stage, the number of output channels of each block. | |
group_widths (list[int]): For each stage, the number of channels per group in group | |
convolution, if the block uses group convolution. | |
strides (list[int]): The stride that each network stage applies to its input. | |
bottleneck_ratios (list[float]): For each stage, the ratio of the number of bottleneck | |
channels to the number of block input channels (or, equivalently, output channels), | |
if the block uses a bottleneck. | |
se_ratio (float): The ratio of the number of channels used inside the squeeze-excitation | |
(SE) module to it number of input channels, if SE the block uses SE. | |
activation_class (callable): A callable taking no arguments that returns another | |
callable implementing an activation function. | |
freeze_at (int): The number of stages at the beginning to freeze. | |
see :meth:`freeze` for detailed explanation. | |
norm (str or callable): normalization for all conv layers. | |
See :func:`layers.get_norm` for supported format. | |
out_features (list[str]): name of the layers whose outputs should | |
be returned in forward. RegNet's use "stem" and "s1", "s2", etc for the stages after | |
the stem. If None, will return the output of the last layer. | |
""" | |
super().__init__() | |
self.stem = stem_class(3, stem_width, norm, activation_class) | |
current_stride = self.stem.stride | |
self._out_feature_strides = {"stem": current_stride} | |
self._out_feature_channels = {"stem": self.stem.out_channels} | |
self.stages_and_names = [] | |
prev_w = stem_width | |
for i, (d, w, s, b, g) in enumerate( | |
zip(depths, widths, strides, bottleneck_ratios, group_widths) | |
): | |
params = {"bot_mul": b, "group_w": g, "se_r": se_ratio} | |
stage = AnyStage(prev_w, w, s, d, block_class, norm, activation_class, params) | |
name = "s{}".format(i + 1) | |
self.add_module(name, stage) | |
self.stages_and_names.append((stage, name)) | |
self._out_feature_strides[name] = current_stride = int( | |
current_stride * np.prod([k.stride for k in stage.children()]) | |
) | |
self._out_feature_channels[name] = list(stage.children())[-1].out_channels | |
prev_w = w | |
self.apply(init_weights) | |
if out_features is None: | |
out_features = [name] | |
self._out_features = out_features | |
assert len(self._out_features) | |
children = [x[0] for x in self.named_children()] | |
for out_feature in self._out_features: | |
assert out_feature in children, "Available children: {} does not include {}".format( | |
", ".join(children), out_feature | |
) | |
self.freeze(freeze_at) | |
def forward(self, x): | |
""" | |
Args: | |
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. | |
Returns: | |
dict[str->Tensor]: names and the corresponding features | |
""" | |
assert x.dim() == 4, f"Model takes an input of shape (N, C, H, W). Got {x.shape} instead!" | |
outputs = {} | |
x = self.stem(x) | |
if "stem" in self._out_features: | |
outputs["stem"] = x | |
for stage, name in self.stages_and_names: | |
x = stage(x) | |
if name in self._out_features: | |
outputs[name] = x | |
return outputs | |
def output_shape(self): | |
return { | |
name: ShapeSpec( | |
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] | |
) | |
for name in self._out_features | |
} | |
def freeze(self, freeze_at=0): | |
""" | |
Freeze the first several stages of the model. Commonly used in fine-tuning. | |
Layers that produce the same feature map spatial size are defined as one | |
"stage" by :paper:`FPN`. | |
Args: | |
freeze_at (int): number of stages to freeze. | |
`1` means freezing the stem. `2` means freezing the stem and | |
one residual stage, etc. | |
Returns: | |
nn.Module: this model itself | |
""" | |
if freeze_at >= 1: | |
self.stem.freeze() | |
for idx, (stage, _) in enumerate(self.stages_and_names, start=2): | |
if freeze_at >= idx: | |
for block in stage.children(): | |
block.freeze() | |
return self | |
def adjust_block_compatibility(ws, bs, gs): | |
"""Adjusts the compatibility of widths, bottlenecks, and groups.""" | |
assert len(ws) == len(bs) == len(gs) | |
assert all(w > 0 and b > 0 and g > 0 for w, b, g in zip(ws, bs, gs)) | |
vs = [int(max(1, w * b)) for w, b in zip(ws, bs)] | |
gs = [int(min(g, v)) for g, v in zip(gs, vs)] | |
ms = [np.lcm(g, b) if b > 1 else g for g, b in zip(gs, bs)] | |
vs = [max(m, int(round(v / m) * m)) for v, m in zip(vs, ms)] | |
ws = [int(v / b) for v, b in zip(vs, bs)] | |
assert all(w * b % g == 0 for w, b, g in zip(ws, bs, gs)) | |
return ws, bs, gs | |
def generate_regnet_parameters(w_a, w_0, w_m, d, q=8): | |
"""Generates per stage widths and depths from RegNet parameters.""" | |
assert w_a >= 0 and w_0 > 0 and w_m > 1 and w_0 % q == 0 | |
# Generate continuous per-block ws | |
ws_cont = np.arange(d) * w_a + w_0 | |
# Generate quantized per-block ws | |
ks = np.round(np.log(ws_cont / w_0) / np.log(w_m)) | |
ws_all = w_0 * np.power(w_m, ks) | |
ws_all = np.round(np.divide(ws_all, q)).astype(int) * q | |
# Generate per stage ws and ds (assumes ws_all are sorted) | |
ws, ds = np.unique(ws_all, return_counts=True) | |
# Compute number of actual stages and total possible stages | |
num_stages, total_stages = len(ws), ks.max() + 1 | |
# Convert numpy arrays to lists and return | |
ws, ds, ws_all, ws_cont = (x.tolist() for x in (ws, ds, ws_all, ws_cont)) | |
return ws, ds, num_stages, total_stages, ws_all, ws_cont | |
class RegNet(AnyNet): | |
"""RegNet model. See :paper:`dds`.""" | |
def __init__( | |
self, | |
*, | |
stem_class, | |
stem_width, | |
block_class, | |
depth, | |
w_a, | |
w_0, | |
w_m, | |
group_width, | |
stride=2, | |
bottleneck_ratio=1.0, | |
se_ratio=0.0, | |
activation_class=None, | |
freeze_at=0, | |
norm="BN", | |
out_features=None, | |
): | |
""" | |
Build a RegNet from the parameterization described in :paper:`dds` Section 3.3. | |
Args: | |
See :class:`AnyNet` for arguments that are not listed here. | |
depth (int): Total number of blocks in the RegNet. | |
w_a (float): Factor by which block width would increase prior to quantizing block widths | |
by stage. See :paper:`dds` Section 3.3. | |
w_0 (int): Initial block width. See :paper:`dds` Section 3.3. | |
w_m (float): Parameter controlling block width quantization. | |
See :paper:`dds` Section 3.3. | |
group_width (int): Number of channels per group in group convolution, if the block uses | |
group convolution. | |
bottleneck_ratio (float): The ratio of the number of bottleneck channels to the number | |
of block input channels (or, equivalently, output channels), if the block uses a | |
bottleneck. | |
stride (int): The stride that each network stage applies to its input. | |
""" | |
ws, ds = generate_regnet_parameters(w_a, w_0, w_m, depth)[0:2] | |
ss = [stride for _ in ws] | |
bs = [bottleneck_ratio for _ in ws] | |
gs = [group_width for _ in ws] | |
ws, bs, gs = adjust_block_compatibility(ws, bs, gs) | |
def default_activation_class(): | |
return nn.ReLU(inplace=True) | |
super().__init__( | |
stem_class=stem_class, | |
stem_width=stem_width, | |
block_class=block_class, | |
depths=ds, | |
widths=ws, | |
strides=ss, | |
group_widths=gs, | |
bottleneck_ratios=bs, | |
se_ratio=se_ratio, | |
activation_class=default_activation_class | |
if activation_class is None | |
else activation_class, | |
freeze_at=freeze_at, | |
norm=norm, | |
out_features=out_features, | |
) |