_BASE_: "Base-RCNN-FPN.yaml" MODEL: PIXEL_STD: [57.375, 57.120, 58.395] BACKBONE: NAME: "build_regnetx_fpn_backbone" META_ARCHITECTURE: "GeneralizedRCNN" WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" # WEIGHTS: "./data/VOC-Detection/faster-rcnn/faster_rcnn_R_50_FPN_all_logistic/random_seed_0/model_final.pth" # PROPOSAL_GENERATOR: # NAME: "RPNLogistic" FPN: IN_FEATURES: ["s1", "s2", "s3", "s4"] MASK_ON: False RESNETS: DEPTH: 50 ROI_HEADS: NAME: "StandardROIHeads" NUM_CLASSES: 10 INPUT: MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800) MIN_SIZE_TEST: 800 DATASETS: TRAIN: ('bdd_custom_train',) TEST: ('bdd_custom_val',) SOLVER: IMS_PER_BATCH: 16 BASE_LR: 0.02 STEPS: (60000, 80000) MAX_ITER: 90000 # 17.4 epochs WARMUP_ITERS: 100 DATALOADER: NUM_WORKERS: 8 # Depends on the available memory