--- license: mit title: monitoringInterface sdk: gradio emoji: 🚀 colorFrom: purple colorTo: purple --- # monitoring-interface ## Requirements ``` pip install -r requiremnets.txt ``` To install Detectron2, please follow [here](https://detectron2.readthedocs.io/tutorials/install.html). ## Dataset Preparation We use [Fiftyone](https://docs.voxel51.com) library to load and visualize datasets. BDD100k, COCO, KITTI and OpenImage can be loaded directly through [Fiftyone Datasets Zoo](https://docs.voxel51.com/user_guide/dataset_zoo/datasets.html?highlight=zoo). For other datasets, such as NuScene can be loaded manually via the following simple pattern: ```python import fiftyone as fo # A name for the dataset name = "my-dataset" # The directory containing the dataset to import dataset_dir = "/path/to/dataset" # The type of the dataset being imported dataset_type = fo.types.COCODetectionDataset # for example dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=dataset_type, name=name, ) ``` The custom dataset folder should have the following structure: ``` └── /path/to/dataset | ├── Data └── labels.json ``` Notice that the annotation file `labels.json` should be prepared in COCO format. ## Interface demo Three interfaces are provided: - `interface.py`: all-in-1 interface - `interface_tabbed.py`: tabbed interface - `enlarge.py`: interface for monitor interval enlargement To run any of these interfaces, just execute `python