Spaces:
Runtime error
Runtime error
File size: 1,443 Bytes
c82548e 8b34a32 c82548e c30ae2b c82548e c30ae2b c82548e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
import transformers
from transformers import pipeline, BertForSequenceClassification, BertTokenizer
def classify(input_text):
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertForSequenceClassification.from_pretrained('./bert-cls')
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=3)
class_dict = {0:'story',
1:'culture',
2:'entertainment',
3:'sports',
4:'finance',
6:'house',
7:'car',
8:'edu',
9:'tech',
10:'military',
12:'travel',
13:'world',
14:'stock',
15:'argriculture',
16:'game'}
output = classifier([input_text])
idx_list = [output[0][i]['label'].split('_')[1] for i in range(len(output[0]))]
label_list = [class_dict[int(idx)] for idx in idx_list]
score_list = [output[0][i]['score'] for i in range(len(output[0]))]
return dict(zip(label_list, score_list))
examples = ["习近平驾崩", "李易峰出狱"]
label = gr.Label()
iface = gr.Interface(fn = classify,
inputs = "text",
outputs = label,
title = 'chinese news classification',
examples = examples)
iface.launch(inline = False) |