import time from scipy.io.wavfile import write # from typing import Union # from pydantic import BaseModel from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import FileResponse # from fastapi.staticfiles import StaticFiles # from fastapi.responses import FileResponse import torch # from transformers import pipeline from transformers import SeamlessM4Tv2Model from transformers import AutoProcessor model_name = "facebook/seamless-m4t-v2-large" # model_name = "facebook/hf-seamless-m4t-medium" processor = AutoProcessor.from_pretrained(model_name) model = SeamlessM4Tv2Model.from_pretrained(model_name) device = "cuda:0" if torch.cuda.is_available() else "cpu" # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model.to(device) app = FastAPI(docs_url="/api/docs") app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], allow_credentials=True, ) BATCH_SIZE = 8 @app.get("/device") def getDevice(): start_time = time.time() print("Time took to process the request and return response is {} sec".format( time.time() - start_time)) return device @app.get("/translate") def transcribe(inputs, src_lang="eng", tgt_lang="por"): start_time = time.time() if inputs is None: raise "No audio file submitted! Please upload or record an audio file before submitting your request." text_inputs = processor(text=inputs, src_lang=src_lang, return_tensors="pt").to(device) output_tokens = model.generate( **text_inputs, tgt_lang=tgt_lang, generate_speech=False) translated_text_from_text = processor.decode( output_tokens[0].tolist()[0], skip_special_tokens=True) print("Time took to process the request and return response is {} sec".format( time.time() - start_time)) return translated_text_from_text @app.get("/audio") async def audio(inputs, src_lang="eng", tgt_lang="por", speaker_id=5): start_time = time.time() if inputs is None: raise "No audio file submitted! Please upload or record an audio file before submitting your request." text_inputs = processor(text=inputs, src_lang=src_lang, return_tensors="pt").to(device) audio_array_from_text = model.generate( **text_inputs, tgt_lang=tgt_lang, speaker_id=int(speaker_id))[0].cpu().numpy().squeeze() print("Time took to process the request and return response is {} sec".format( time.time() - start_time)) print(f"sampling_rate {model.config.sampling_rate}") write(f"/tmp/output{start_time}.wav", model.config.sampling_rate, audio_array_from_text) return FileResponse(f"/tmp/output{start_time}.wav", media_type="audio/mpeg")