HugoVoxx's picture
Upload 96 files
be3b34d verified
raw
history blame
6.78 kB
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Unit tests for ar.py."""
import unittest
from absl.testing import absltest
import ar
import graph as gh
import problem as pr
class ARTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.defs = pr.Definition.from_txt_file('defs.txt', to_dict=True)
cls.rules = pr.Theorem.from_txt_file('rules.txt', to_dict=True)
def test_update_groups(self):
"""Test for update_groups."""
groups1 = [{1, 2}, {3, 4, 5}, {6, 7}]
groups2 = [{2, 3, 8}, {9, 10, 11}]
_, links, history = ar.update_groups(groups1, groups2)
self.assertEqual(
history,
[
[{1, 2, 3, 4, 5, 8}, {6, 7}],
[{1, 2, 3, 4, 5, 8}, {6, 7}, {9, 10, 11}],
],
)
self.assertEqual(links, [(2, 3), (3, 8), (9, 10), (10, 11)])
groups1 = [{1, 2}, {3, 4}, {5, 6}, {7, 8}]
groups2 = [{2, 3, 8, 9, 10}, {3, 6, 11}]
_, links, history = ar.update_groups(groups1, groups2)
self.assertEqual(
history,
[
[{1, 2, 3, 4, 7, 8, 9, 10}, {5, 6}],
[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}],
],
)
self.assertEqual(links, [(2, 3), (3, 8), (8, 9), (9, 10), (3, 6), (6, 11)])
groups1 = []
groups2 = [{1, 2}, {3, 4}, {5, 6}, {2, 3}]
_, links, history = ar.update_groups(groups1, groups2)
self.assertEqual(
history,
[
[{1, 2}],
[{1, 2}, {3, 4}],
[{1, 2}, {3, 4}, {5, 6}],
[{1, 2, 3, 4}, {5, 6}],
],
)
self.assertEqual(links, [(1, 2), (3, 4), (5, 6), (2, 3)])
def test_generic_table_simple(self):
tb = ar.Table()
# If a-b = b-c & d-a = c-d
tb.add_eq4('a', 'b', 'b', 'c', 'fact1')
tb.add_eq4('d', 'a', 'c', 'd', 'fact2')
tb.add_eq4('x', 'y', 'z', 't', 'fact3') # distractor fact
# Then b=d, because {fact1, fact2} but not fact3.
result = list(tb.get_all_eqs_and_why())
self.assertIn(('b', 'd', ['fact1', 'fact2']), result)
def test_angle_table_inbisector_exbisector(self):
"""Test that AR can figure out bisector & ex-bisector are perpendicular."""
# Load the scenario that we have cd is bisector of acb and
# ce is the ex-bisector of acb.
p = pr.Problem.from_txt(
'a b c = triangle a b c; d = incenter d a b c; e = excenter e a b c ?'
' perp d c c e'
)
g, _ = gh.Graph.build_problem(p, ARTest.defs)
# Create an external angle table:
tb = ar.AngleTable('pi')
# Add bisector & ex-bisector facts into the table:
ca, cd, cb, ce = g.names2nodes(['d(ac)', 'd(cd)', 'd(bc)', 'd(ce)'])
tb.add_eqangle(ca, cd, cd, cb, 'fact1')
tb.add_eqangle(ce, ca, cb, ce, 'fact2')
# Add a distractor fact to make sure traceback does not include this fact
ab = g.names2nodes(['d(ab)'])[0]
tb.add_eqangle(ab, cb, cb, ca, 'fact3')
# Check for all new equalities
result = list(tb.get_all_eqs_and_why())
# halfpi is represented as a tuple (1, 2)
halfpi = (1, 2)
# check that cd-ce == halfpi and this is because fact1 & fact2, not fact3
self.assertCountEqual(
result,
[
(cd, ce, halfpi, ['fact1', 'fact2']),
(ce, cd, halfpi, ['fact1', 'fact2']),
],
)
def test_angle_table_equilateral_triangle(self):
"""Test that AR can figure out triangles with 3 equal angles => each is pi/3."""
# Load an equaliteral scenario
p = pr.Problem.from_txt('a b c = ieq_triangle ? cong a b a c')
g, _ = gh.Graph.build_problem(p, ARTest.defs)
# Add two eqangles facts because ieq_triangle only add congruent sides
a, b, c = g.names2nodes('abc')
g.add_eqangle([a, b, b, c, b, c, c, a], pr.EmptyDependency(0, None))
g.add_eqangle([b, c, c, a, c, a, a, b], pr.EmptyDependency(0, None))
# Create an external angle table:
tb = ar.AngleTable('pi')
# Add the fact that there are three equal angles
ab, bc, ca = g.names2nodes(['d(ab)', 'd(bc)', 'd(ac)'])
tb.add_eqangle(ab, bc, bc, ca, 'fact1')
tb.add_eqangle(bc, ca, ca, ab, 'fact2')
# Now check for all new equalities
result = list(tb.get_all_eqs_and_why())
result = [(x.name, y.name, z, t) for x, y, z, t in result]
# 1/3 pi is represented as a tuple angle_60
angle_60 = (1, 3)
angle_120 = (2, 3)
# check that angles constants are created and figured out:
self.assertCountEqual(
result,
[
('d(bc)', 'd(ac)', angle_120, ['fact1', 'fact2']),
('d(ab)', 'd(bc)', angle_120, ['fact1', 'fact2']),
('d(ac)', 'd(ab)', angle_120, ['fact1', 'fact2']),
('d(ac)', 'd(bc)', angle_60, ['fact1', 'fact2']),
('d(bc)', 'd(ab)', angle_60, ['fact1', 'fact2']),
('d(ab)', 'd(ac)', angle_60, ['fact1', 'fact2']),
],
)
def test_incenter_excenter_touchpoints(self):
"""Test that AR can figure out incenter/excenter touchpoints are equidistant to midpoint."""
p = pr.Problem.from_txt(
'a b c = triangle a b c; d1 d2 d3 d = incenter2 a b c; e1 e2 e3 e ='
' excenter2 a b c ? perp d c c e',
translate=False,
)
g, _ = gh.Graph.build_problem(p, ARTest.defs)
a, b, c, ab, bc, ca, d1, d2, d3, e1, e2, e3 = g.names2nodes(
['a', 'b', 'c', 'ab', 'bc', 'ac', 'd1', 'd2', 'd3', 'e1', 'e2', 'e3']
)
# Create an external distance table:
tb = ar.DistanceTable()
# DD can figure out the following facts,
# we manually add them to AR.
tb.add_cong(ab, ca, a, d3, a, d2, 'fact1')
tb.add_cong(ab, ca, a, e3, a, e2, 'fact2')
tb.add_cong(ca, bc, c, d2, c, d1, 'fact5')
tb.add_cong(ca, bc, c, e2, c, e1, 'fact6')
tb.add_cong(bc, ab, b, d1, b, d3, 'fact3')
tb.add_cong(bc, ab, b, e1, b, e3, 'fact4')
# Now we check whether tb has figured out that
# distance(b, d1) == distance(e1, c)
# linear comb exprssion of each variables:
b = tb.v2e['bc:b']
c = tb.v2e['bc:c']
d1 = tb.v2e['bc:d1']
e1 = tb.v2e['bc:e1']
self.assertEqual(ar.minus(d1, b), ar.minus(c, e1))
if __name__ == '__main__':
absltest.main()