Spaces:
Sleeping
Sleeping
# Copyright 2023 DeepMind Technologies Limited | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Fast decoding routines for inference from a trained model. | |
Modified https://github.com/google/flax/blob/main/examples/wmt/decode.py | |
to acommodate | |
(a) continued decoding from a previous beam cache. | |
(b) init with with a single beam and then expand into beam_size beams. | |
""" | |
from typing import Any | |
import flax | |
import jax | |
from jax import lax | |
import jax.numpy as jnp | |
import numpy as np | |
# Constants | |
# "Effective negative infinity" constant for masking in beam search. | |
NEG_INF = np.array(-1.0e7) | |
# Beam search parameters | |
BEAM_SEARCH_DEFAULT_ALPHA = 0.6 | |
MAX_DECODE_LEN = 32 | |
# Brevity penalty parameters | |
BREVITY_LEN_BIAS_NUMERATOR = 5.0 | |
BREVITY_LEN_BIAS_DENOMINATOR = 6.0 | |
def brevity_penalty(alpha: float, length: int): | |
"""Brevity penalty function for beam search penalizing short sequences. | |
Args: | |
alpha: float: brevity-penalty scaling parameter. | |
length: int: length of considered sequence. | |
Returns: | |
Brevity penalty score as jax scalar. | |
""" | |
return jnp.power( | |
((BREVITY_LEN_BIAS_NUMERATOR + length) / BREVITY_LEN_BIAS_DENOMINATOR), | |
alpha, | |
) | |
# Beam handling utility functions: | |
def add_beam_dim(x: jnp.ndarray, beam_size: int) -> jnp.ndarray: | |
"""Creates new beam dimension in non-scalar array and tiles into it.""" | |
if x.ndim == 0: # ignore scalars (e.g. cache index) | |
return x | |
x = jnp.expand_dims(x, axis=1) | |
tile_dims = [1] * x.ndim | |
tile_dims[1] = beam_size | |
return jnp.tile(x, tile_dims) | |
def add_beam_dim_cache( | |
cache: tuple[dict[str, jnp.ndarray], ...], beam_size: int | |
) -> tuple[dict[str, jnp.ndarray], ...]: | |
"""Creates new beam dimension in non-scalar array and tiles into it.""" | |
new_cache = [] | |
for layer in cache: | |
new_layer = {} | |
for key, x in layer.items(): | |
if key in ['keys', 'vals']: | |
x = add_beam_dim(x, beam_size) | |
new_layer[key] = x | |
new_cache.append(new_layer) | |
return tuple(new_cache) | |
def flatten_beam_dim(x): | |
"""Flattens the first two dimensions of a non-scalar array.""" | |
if x.ndim < 2: # ignore scalars (e.g. cache index) | |
return x | |
return x.reshape((x.shape[0] * x.shape[1],) + x.shape[2:]) | |
def unflatten_beam_dim(x, batch_size, beam_size): | |
"""Unflattens the first, flat batch*beam dimension of a non-scalar array.""" | |
if x.ndim == 0: # ignore scalars (e.g. cache index) | |
return x | |
assert batch_size * beam_size == x.shape[0] | |
return x.reshape((batch_size, beam_size) + x.shape[1:]) | |
def flat_batch_beam_expand(x, beam_size): | |
"""Expands the each batch item by beam_size in batch_dimension.""" | |
return flatten_beam_dim(add_beam_dim(x, beam_size)) | |
def gather_beams(nested, beam_indices, batch_size, new_beam_size): | |
"""Gathers the beam slices indexed by beam_indices into new beam array. | |
Args: | |
nested: pytree of arrays or scalars (the latter ignored). | |
beam_indices: array of beam_indices | |
batch_size: int: size of batch. | |
new_beam_size: int: size of _new_ beam dimension. | |
Returns: | |
New pytree with new beam arrays. | |
[batch_size, old_beam_size, ...] --> [batch_size, new_beam_size, ...] | |
""" | |
batch_indices = jnp.reshape( | |
jnp.arange(batch_size * new_beam_size) // new_beam_size, | |
(batch_size, new_beam_size), | |
) | |
def gather_fn(x): | |
if x.ndim == 0: # ignore scalars (e.g. cache index) | |
return x | |
else: | |
return x[batch_indices, beam_indices] | |
return jax.tree_util.tree_map(gather_fn, nested) | |
def gather_topk_beams(nested, score_or_log_prob, batch_size, new_beam_size): | |
"""Gathers the top-k beam slices given by score_or_log_prob array. | |
Args: | |
nested: pytree of arrays or scalars (the latter ignored). | |
score_or_log_prob: [batch_size, old_beam_size] array of values to sort by | |
for top-k selection of beam slices. | |
batch_size: int: size of batch. | |
new_beam_size: int: size of _new_ top-k selected beam dimension | |
Returns: | |
New pytree with new beam arrays containing top k new_beam_size slices. | |
[batch_size, old_beam_size, ...] --> [batch_size, new_beam_size, ...] | |
""" | |
_, topk_indices = lax.top_k(score_or_log_prob, k=new_beam_size) | |
topk_indices = jnp.flip(topk_indices, axis=1) | |
return gather_beams(nested, topk_indices, batch_size, new_beam_size) | |
def apply_on_cache(fn, cache, *args, **kwargs): | |
"""Apply fn(val) only when key is 'keys' or 'val'.""" | |
new_cache = [] | |
for layer in cache: | |
new_layer = {} | |
for key, val in layer.items(): | |
if key in ['keys', 'values', 'current_index', 'relative_position_bias']: | |
val = fn(val, *args, **kwargs) | |
new_layer[key] = val | |
new_cache.append(new_layer) | |
return tuple(new_cache) | |
# Beam search state: | |
class BeamState: | |
"""Holds beam search state data.""" | |
# The position of the decoding loop in the length dimension. | |
cur_index: jax.Array # scalar int32: current decoded length index | |
# The active sequence log probabilities and finished sequence scores. | |
live_logprobs: jax.Array # float32: [batch_size, beam_size] | |
finished_scores: jax.Array # float32: [batch_size, beam_size] | |
# The current active-beam-searching and finished sequences. | |
live_seqs: jax.Array # int32: [batch_size, beam_size, max_decode_len] | |
finished_seqs: jax.Array # int32: [batch_size, beam_size, | |
# max_decode_len] | |
# Records which of the 'finished_seqs' is occupied and not a filler slot. | |
finished_flags: jax.Array # bool: [batch_size, beam_size] | |
# The current state of the autoregressive decoding caches. | |
cache: Any # Any pytree of arrays, e.g. flax attention Cache object | |
def beam_init(seed_token, batch_size, beam_size, max_decode_len, cache): | |
"""Initializes the beam search state data structure.""" | |
cur_index0 = jnp.array(0) | |
live_logprobs0 = jnp.tile( | |
jnp.array([0.0] + [NEG_INF] * (beam_size - 1)), [batch_size, 1] | |
) | |
finished_scores0 = jnp.ones((batch_size, beam_size)) * NEG_INF | |
live_seqs0 = jnp.concatenate( | |
[ | |
jnp.reshape(seed_token, (batch_size, beam_size, 1)), | |
jnp.zeros((batch_size, beam_size, max_decode_len - 1), jnp.int32), | |
], | |
axis=-1, | |
) # (batch, beam, max_decode_len) | |
finished_seqs0 = jnp.zeros((batch_size, beam_size, max_decode_len), jnp.int32) | |
finished_flags0 = jnp.zeros((batch_size, beam_size), jnp.bool_) | |
beam_cache0 = apply_on_cache(lambda x: jnp.expand_dims(x, axis=0), cache) | |
return BeamState( | |
cur_index=cur_index0, | |
live_logprobs=live_logprobs0, | |
finished_scores=finished_scores0, | |
live_seqs=live_seqs0, | |
finished_seqs=finished_seqs0, | |
finished_flags=finished_flags0, | |
cache=beam_cache0, | |
) | |
# Beam search routine: | |
def beam_search_flat( | |
seed_token, | |
cache, | |
tokens_to_logits, | |
alpha=BEAM_SEARCH_DEFAULT_ALPHA, | |
eos=None, | |
max_decode_len=MAX_DECODE_LEN, | |
mask=None, | |
): | |
"""Beam search for LM. | |
inputs and cache is already flat! i.e. first dimention == batch*beam. | |
Args: | |
seed_token: array: [beam_size, 1] int32 sequence of tokens. | |
cache: flax attention cache. | |
tokens_to_logits: fast autoregressive decoder function taking single token | |
slices and cache and returning next-token logits and updated cache. | |
alpha: float: scaling factor for brevity penalty. | |
eos: array: [vocab] 1 for end-of-sentence tokens, 0 for not. | |
max_decode_len: int: maximum length of decoded translations. | |
mask: array: [vocab] binary mask for vocab. 1 to keep the prob, 0 to set the | |
prob := 0. | |
Returns: | |
Tuple of: | |
[beam_size, max_decode_len] top-scoring sequences | |
[beam_size] beam-search scores. | |
""" | |
# We liberally annotate shape information for clarity below. | |
batch_size, beam_size = 1, seed_token.shape[0] | |
mask = mask.reshape((1, 1, -1)) | |
eos = eos.reshape((1, 1, -1)) | |
mask_bias = (1 - mask) * NEG_INF | |
# initialize beam search state | |
beam_search_init_state = beam_init( | |
seed_token, batch_size, beam_size, max_decode_len, cache | |
) | |
def beam_search_loop_cond_fn(state): | |
"""Beam search loop termination condition.""" | |
# Have we reached max decoding length? | |
not_at_end = state.cur_index < max_decode_len - 1 | |
# Is no further progress in the beam search possible? | |
# Get the best possible scores from alive sequences. | |
min_brevity_penalty = brevity_penalty(alpha, max_decode_len) | |
best_live_scores = state.live_logprobs[:, -1:] / min_brevity_penalty | |
# Get the worst scores from finished sequences. | |
worst_finished_scores = jnp.min( | |
state.finished_scores, axis=1, keepdims=True | |
) | |
# Mask out scores from slots without any actual finished sequences. | |
worst_finished_scores = jnp.where( | |
state.finished_flags, worst_finished_scores, NEG_INF | |
) | |
# If no best possible live score is better than current worst finished | |
# scores, the search cannot improve the finished set further. | |
search_terminated = jnp.all(worst_finished_scores > best_live_scores) | |
# If we're not at the max decode length, and the search hasn't terminated, | |
# continue looping. | |
return not_at_end & (~search_terminated) | |
def beam_search_loop_body_fn(state): | |
"""Beam search loop state update function.""" | |
# Collect the current position slice along length to feed the fast | |
# autoregressive decoder model. Flatten the beam dimension into batch | |
# dimension for feeding into the model. | |
# --> [batch * beam, 1] | |
flat_ids = flatten_beam_dim( | |
lax.dynamic_slice( | |
state.live_seqs, (0, 0, state.cur_index), (batch_size, beam_size, 1) | |
) | |
) | |
# Flatten beam dimension into batch to be compatible with model. | |
# {[batch, beam, ...], ...} --> {[batch * beam, ...], ...} | |
flat_cache = apply_on_cache(flatten_beam_dim, state.cache) | |
# Call fast-decoder model on current tokens to get next-position logits. | |
# --> [batch * beam, vocab] | |
flat_logits, new_flat_cache = tokens_to_logits(flat_ids, flat_cache) | |
# unflatten beam dimension | |
# [batch * beam, vocab] --> [batch, beam, vocab] | |
logits = unflatten_beam_dim(flat_logits, batch_size, beam_size) | |
# Unflatten beam dimension in attention cache arrays | |
# {[batch * beam, ...], ...} --> {[batch, beam, ...], ...} | |
new_cache = apply_on_cache( | |
unflatten_beam_dim, new_flat_cache, batch_size, beam_size | |
) | |
# Gather log probabilities from logits | |
candidate_log_probs = jax.nn.log_softmax(logits) | |
# Add new logprobs to existing prefix logprobs. | |
# --> [batch, beam, vocab] | |
log_probs = candidate_log_probs + jnp.expand_dims( | |
state.live_logprobs, axis=2 | |
) | |
# We'll need the vocab size, gather it from the log probability dimension. | |
vocab_size = log_probs.shape[2] | |
# mask away some tokens. | |
log_probs += mask_bias # [batch,beam,vocab]+[1,1,vocab] | |
# Each item in batch has beam_size * vocab_size candidate sequences. | |
# For each item, get the top 2*k candidates with the highest log- | |
# probabilities. We gather the top 2*K beams here so that even if the best | |
# K sequences reach EOS simultaneously, we have another K sequences | |
# remaining to continue the live beam search. | |
beams_to_keep = 2 * beam_size | |
# Flatten beam and vocab dimensions. | |
flat_log_probs = log_probs.reshape((batch_size, beam_size * vocab_size)) | |
# Gather the top 2*K scores from _all_ beams. | |
# --> [batch, 2*beams], [batch, 2*beams] | |
topk_log_probs, topk_indices = lax.top_k(flat_log_probs, k=beams_to_keep) | |
# Recover the beam index by floor division. | |
topk_beam_indices = topk_indices // vocab_size | |
# Gather 2*k top beams. | |
# --> [batch, 2*beams, length] | |
topk_seq = gather_beams( | |
state.live_seqs, topk_beam_indices, batch_size, beams_to_keep | |
) | |
# Append the most probable 2*K token IDs to the top 2*K sequences | |
# Recover token id by modulo division and expand Id array for broadcasting. | |
# --> [batch, 2*beams, 1] | |
topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2) | |
# Update sequences for the 2*K top-k new sequences. | |
# --> [batch, 2*beams, length] | |
topk_seq = lax.dynamic_update_slice( | |
topk_seq, topk_ids, (0, 0, state.cur_index + 1) | |
) | |
# Update LIVE (in-progress) sequences: | |
# Did any of these sequences reach an end marker? | |
# --> [batch, 2*beams] | |
last_token = topk_seq[:, :, state.cur_index + 1] | |
last_token = jax.nn.one_hot(last_token, vocab_size, dtype=jnp.bfloat16) | |
# any([batch, 2b, vocab] * [1, 1, vocab], axis=-1) == [batch, 2b] | |
newly_finished = jnp.any(last_token * eos, axis=-1) | |
# To prevent these newly finished sequences from being added to the LIVE | |
# set of active beam search sequences, set their log probs to a very large | |
# negative value. | |
new_log_probs = topk_log_probs + newly_finished * NEG_INF | |
# Determine the top k beam indices (from top 2*k beams) from log probs. | |
# --> [batch, beams] | |
_, new_topk_indices = lax.top_k(new_log_probs, k=beam_size) | |
new_topk_indices = jnp.flip(new_topk_indices, axis=1) | |
# Gather the top k beams (from top 2*k beams). | |
# --> [batch, beams, length], [batch, beams] | |
top_alive_seq, top_alive_log_probs = gather_beams( | |
[topk_seq, new_log_probs], new_topk_indices, batch_size, beam_size | |
) | |
# Determine the top k beam indices from the original set of all beams. | |
# --> [batch, beams] | |
top_alive_indices = gather_beams( | |
topk_beam_indices, new_topk_indices, batch_size, beam_size | |
) | |
# With these, gather the top k beam-associated caches. | |
# --> {[batch, beams, ...], ...} | |
top_alive_cache = apply_on_cache( | |
gather_beams, new_cache, top_alive_indices, batch_size, beam_size | |
) | |
# Update FINISHED (reached end of sentence) sequences: | |
# Calculate new seq scores from log probabilities. | |
new_scores = topk_log_probs / brevity_penalty(alpha, state.cur_index + 1) | |
# Mask out the still unfinished sequences by adding large negative value. | |
# --> [batch, 2*beams] | |
new_scores += (~newly_finished) * NEG_INF | |
# Combine sequences, scores, and flags along the beam dimension and compare | |
# new finished sequence scores to existing finished scores and select the | |
# best from the new set of beams. | |
finished_seqs = jnp.concatenate( # --> [batch, 3*beams, length] | |
[state.finished_seqs, topk_seq], axis=1 | |
) | |
finished_scores = jnp.concatenate( # --> [batch, 3*beams] | |
[state.finished_scores, new_scores], axis=1 | |
) | |
finished_flags = jnp.concatenate( # --> [batch, 3*beams] | |
[state.finished_flags, newly_finished], axis=1 | |
) | |
# --> [batch, beams, length], [batch, beams], [batch, beams] | |
top_finished_seq, top_finished_scores, top_finished_flags = ( | |
gather_topk_beams( | |
[finished_seqs, finished_scores, finished_flags], | |
finished_scores, | |
batch_size, | |
beam_size, | |
) | |
) | |
return BeamState( | |
cur_index=state.cur_index + 1, | |
live_logprobs=top_alive_log_probs, | |
finished_scores=top_finished_scores, | |
live_seqs=top_alive_seq, | |
finished_seqs=top_finished_seq, | |
finished_flags=top_finished_flags, | |
cache=top_alive_cache, | |
) | |
# Run while loop and get final beam search state. | |
final_state = lax.while_loop( | |
beam_search_loop_cond_fn, beam_search_loop_body_fn, beam_search_init_state | |
) | |
# Account for the edge-case where there are no finished sequences for a | |
# particular batch item. If so, return live sequences for that batch item. | |
# --> [batch] | |
none_finished = jnp.any(final_state.finished_flags, axis=1) | |
# --> [batch, beams, length] | |
finished_seqs = jnp.where( | |
none_finished[:, None, None], | |
final_state.finished_seqs, | |
final_state.live_seqs, | |
) | |
# --> [batch, beams] | |
finished_scores = jnp.where( | |
none_finished[:, None], | |
final_state.finished_scores, | |
final_state.live_logprobs, | |
) | |
finished_seqs = jnp.reshape(finished_seqs, (beam_size, max_decode_len)) | |
finished_scores = jnp.reshape(finished_scores, (beam_size,)) | |
final_cache = apply_on_cache(flatten_beam_dim, final_state.cache) | |
return finished_seqs, finished_scores, final_cache | |