Spaces:
Sleeping
Sleeping
# Copyright 2023 DeepMind Technologies Limited | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Run DD+AR or AlphaGeometry solver. | |
Please refer to README.md for detailed instructions. | |
""" | |
import time | |
import traceback | |
from absl import app | |
from absl import flags | |
from absl import logging | |
import ddar | |
import graph as gh | |
import lm_inference as lm | |
import pretty as pt | |
import problem as pr | |
#============= | |
import sys, os, math, re | |
import multiprocessing | |
import warnings | |
warnings.filterwarnings("ignore") | |
model = None # global variable used in multi-processing workers | |
_GIN_SEARCH_PATHS = flags.DEFINE_list( | |
'gin_search_paths', | |
['third_party/py/meliad/transformer/configs'], | |
'List of paths where the Gin config files are located.', | |
) | |
_GIN_FILE = flags.DEFINE_multi_string( | |
'gin_file', ['base_htrans.gin'], 'List of Gin config files.' | |
) | |
_GIN_PARAM = flags.DEFINE_multi_string( | |
'gin_param', None, 'Newline separated list of Gin parameter bindings.' | |
) | |
_PROBLEMS_FILE = flags.DEFINE_string( | |
'problems_file', | |
'imo_ag_30.txt', | |
'text file contains the problem strings. See imo_ag_30.txt for example.', | |
) | |
_PROBLEM_NAME = flags.DEFINE_string( | |
'problem_name', | |
'imo_2000_p1', | |
'name of the problem to solve, must be in the problem_file.', | |
) | |
_MODE = flags.DEFINE_string( | |
'mode', 'ddar', 'either `ddar` (DD+AR) or `alphageometry`') | |
_DEFS_FILE = flags.DEFINE_string( | |
'defs_file', | |
'defs.txt', | |
'definitions of available constructions to state a problem.', | |
) | |
_RULES_FILE = flags.DEFINE_string( | |
'rules_file', 'rules.txt', 'list of deduction rules used by DD.' | |
) | |
_CKPT_PATH = flags.DEFINE_string('ckpt_path', '', 'checkpoint of the LM model.') | |
_VOCAB_PATH = flags.DEFINE_string( | |
'vocab_path', '', 'path to the LM vocab file.' | |
) | |
_OUT_FILE = flags.DEFINE_string( | |
'out_file', '', 'path to the solution output file.' | |
) # pylint: disable=line-too-long | |
_BEAM_SIZE = flags.DEFINE_integer( | |
'beam_size', 1, 'beam size of the proof search.' | |
) # pylint: disable=line-too-long | |
_SEARCH_DEPTH = flags.DEFINE_integer( | |
'search_depth', 1, 'search depth of the proof search.' | |
) # pylint: disable=line-too-long | |
#=================================== | |
_N_WORKSERS = flags.DEFINE_integer( | |
'n_workers', 1, 'number of workers' | |
)# pylint: disable=line-too-long | |
DEFINITIONS = None # contains definitions of construction actions | |
RULES = None # contains rules of deductions | |
def natural_language_statement(logical_statement: pr.Dependency) -> str: | |
"""Convert logical_statement to natural language. | |
Args: | |
logical_statement: pr.Dependency with .name and .args | |
Returns: | |
a string of (pseudo) natural language of the predicate for human reader. | |
""" | |
names = [a.name.upper() for a in logical_statement.args] | |
names = [(n[0] + '_' + n[1:]) if len(n) > 1 else n for n in names] | |
return pt.pretty_nl(logical_statement.name, names) | |
def proof_step_string( | |
proof_step: pr.Dependency, refs: dict[tuple[str, ...], int], last_step: bool | |
) -> str: | |
"""Translate proof to natural language. | |
Args: | |
proof_step: pr.Dependency with .name and .args | |
refs: dict(hash: int) to keep track of derived predicates | |
last_step: boolean to keep track whether this is the last step. | |
Returns: | |
a string of (pseudo) natural language of the proof step for human reader. | |
""" | |
premises, [conclusion] = proof_step | |
premises_nl = ' & '.join( | |
[ | |
natural_language_statement(p) + ' [{:02}]'.format(refs[p.hashed()]) | |
for p in premises | |
] | |
) | |
if not premises: | |
premises_nl = 'similarly' | |
refs[conclusion.hashed()] = len(refs) | |
conclusion_nl = natural_language_statement(conclusion) | |
if not last_step: | |
conclusion_nl += ' [{:02}]'.format(refs[conclusion.hashed()]) | |
return f'{premises_nl} \u21d2 {conclusion_nl}' | |
def write_solution(g: gh.Graph, p: pr.Problem, out_file: str) -> None: | |
"""Output the solution to out_file. | |
Args: | |
g: gh.Graph object, containing the proof state. | |
p: pr.Problem object, containing the theorem. | |
out_file: file to write to, empty string to skip writing to file. | |
""" | |
setup, aux, proof_steps, refs = ddar.get_proof_steps( | |
g, p.goal, merge_trivials=False | |
) | |
solution = '' | |
solution += 'Theo đề bài ta có:\n' | |
premises_nl = [] | |
for premises, [points] in setup: | |
solution += ' '.join([p.name.upper() for p in points]) + ' ' | |
if not premises: | |
continue | |
premises_nl += [ | |
natural_language_statement(p) + ' [{:02}]'.format(refs[p.hashed()]) | |
for p in premises | |
] | |
solution += ': Points\n' + '\n'.join(premises_nl) | |
solution += '\n\nCác điểm cần dựng thêm:\n' | |
aux_premises_nl = [] | |
if len(aux) == 0: | |
solution += 'Không cần dựng thêm điểm nào.' | |
else: | |
for premises, [points] in aux: | |
solution += ' '.join([p.name.upper() for p in points]) + ' ' | |
aux_premises_nl += [ | |
natural_language_statement(p) + ' [{:02}]'.format(refs[p.hashed()]) | |
for p in premises | |
] | |
solution += ': Points\n' + '\n'.join(aux_premises_nl) | |
# some special case where the deduction rule has a well known name. | |
r2name = { | |
'r32': '(SSS)', | |
'r33': '(SAS)', | |
'r34': '(Similar Triangles)', | |
'r35': '(Similar Triangles)', | |
'r36': '(ASA)', | |
'r37': '(ASA)', | |
'r38': '(Similar Triangles)', | |
'r39': '(Similar Triangles)', | |
'r40': '(Congruent Triangles)', | |
'a00': '(Distance chase)', | |
'a01': '(Ratio chase)', | |
'a02': '(Angle chase)', | |
} | |
solution += '\n\nCác bước chứng minh:\n' | |
for i, step in enumerate(proof_steps): | |
_, [con] = step | |
nl = proof_step_string(step, refs, last_step=i == len(proof_steps) - 1) | |
rule_name = r2name.get(con.rule_name, '') | |
nl = nl.replace('\u21d2', f'{rule_name}\u21d2 ') | |
solution += '{:03}. '.format(i + 1) + nl + '\n' | |
logging.info(solution) | |
if out_file: | |
with open(out_file, 'w') as f: | |
f.write(solution) | |
logging.info('Solution written to %s.', out_file) | |
def get_lm(ckpt_init: str, vocab_path: str) -> lm.LanguageModelInference: | |
lm.parse_gin_configuration( | |
_GIN_FILE.value, _GIN_PARAM.value, gin_paths=_GIN_SEARCH_PATHS.value | |
) | |
return lm.LanguageModelInference(vocab_path, ckpt_init, mode='beam_search') | |
def run_ddar(g: gh.Graph, p: pr.Problem, out_file: str) -> bool: | |
"""Run DD+AR. | |
Args: | |
g: gh.Graph object, containing the proof state. | |
p: pr.Problem object, containing the problem statement. | |
out_file: path to output file if solution is found. | |
Returns: | |
Boolean, whether DD+AR finishes successfully. | |
""" | |
ddar.solve(g, RULES, p, max_level=1000) | |
goal_args = g.names2nodes(p.goal.args) | |
if not g.check(p.goal.name, goal_args): | |
logging.info('DD+AR failed to solve the problem.') | |
return False | |
write_solution(g, p, out_file) | |
gh.nm.draw( | |
g.type2nodes[gh.Point], | |
g.type2nodes[gh.Line], | |
g.type2nodes[gh.Circle], | |
g.type2nodes[gh.Segment], | |
save_to="ag4mout/output.png",) | |
return True | |
def translate_constrained_to_constructive( | |
point: str, name: str, args: list[str] | |
) -> tuple[str, list[str]]: | |
"""Translate a predicate from constraint-based to construction-based. | |
Args: | |
point: str: name of the new point | |
name: str: name of the predicate, e.g., perp, para, etc. | |
args: list[str]: list of predicate args. | |
Returns: | |
(name, args): translated to constructive predicate. | |
""" | |
if name in ['T', 'perp']: | |
a, b, c, d = args | |
if point in [c, d]: | |
a, b, c, d = c, d, a, b | |
if point == b: | |
a, b = b, a | |
if point == d: | |
c, d = d, c | |
if a == c and a == point: | |
return 'on_dia', [a, b, d] | |
return 'on_tline', [a, b, c, d] | |
elif name in ['P', 'para']: | |
a, b, c, d = args | |
if point in [c, d]: | |
a, b, c, d = c, d, a, b | |
if point == b: | |
a, b = b, a | |
return 'on_pline', [a, b, c, d] | |
elif name in ['D', 'cong']: | |
a, b, c, d = args | |
if point in [c, d]: | |
a, b, c, d = c, d, a, b | |
if point == b: | |
a, b = b, a | |
if point == d: | |
c, d = d, c | |
if a == c and a == point: | |
return 'on_bline', [a, b, d] | |
if b in [c, d]: | |
if b == d: | |
c, d = d, c # pylint: disable=unused-variable | |
return 'on_circle', [a, b, d] | |
return 'eqdistance', [a, b, c, d] | |
elif name in ['C', 'coll']: | |
a, b, c = args | |
if point == b: | |
a, b = b, a | |
if point == c: | |
a, b, c = c, a, b | |
return 'on_line', [a, b, c] | |
elif name in ['^', 'eqangle']: | |
a, b, c, d, e, f = args | |
if point in [d, e, f]: | |
a, b, c, d, e, f = d, e, f, a, b, c | |
x, b, y, c, d = b, c, e, d, f | |
if point == b: | |
a, b, c, d = b, a, d, c | |
if point == d and x == y: # x p x b = x c x p | |
return 'angle_bisector', [point, b, x, c] | |
if point == x: | |
return 'eqangle3', [x, a, b, y, c, d] | |
return 'on_aline', [a, x, b, c, y, d] | |
elif name in ['cyclic', 'O']: | |
a, b, c = [x for x in args if x != point] | |
return 'on_circum', [point, a, b, c] | |
return name, args | |
def check_valid_args(name: str, args: list[str]) -> bool: | |
"""Check whether a predicate is grammarically correct. | |
Args: | |
name: str: name of the predicate | |
args: list[str]: args of the predicate | |
Returns: | |
bool: whether the predicate arg count is valid. | |
""" | |
if name == 'perp': | |
if len(args) != 4: | |
return False | |
a, b, c, d = args | |
if len({a, b}) < 2: | |
return False | |
if len({c, d}) < 2: | |
return False | |
elif name == 'para': | |
if len(args) != 4: | |
return False | |
a, b, c, d = args | |
if len({a, b, c, d}) < 4: | |
return False | |
elif name == 'cong': | |
if len(args) != 4: | |
return False | |
a, b, c, d = args | |
if len({a, b}) < 2: | |
return False | |
if len({c, d}) < 2: | |
return False | |
elif name == 'coll': | |
if len(args) != 3: | |
return False | |
a, b, c = args | |
if len({a, b, c}) < 3: | |
return False | |
elif name == 'cyclic': | |
if len(args) != 4: | |
return False | |
a, b, c, d = args | |
if len({a, b, c, d}) < 4: | |
return False | |
elif name == 'eqangle': | |
if len(args) != 8: | |
return False | |
a, b, c, d, e, f, g, h = args | |
if len({a, b, c, d}) < 3: | |
return False | |
if len({e, f, g, h}) < 3: | |
return False | |
return True | |
def try_translate_constrained_to_construct(string: str, g: gh.Graph) -> str: | |
"""Whether a string of aux construction can be constructed. | |
Args: | |
string: str: the string describing aux construction. | |
g: gh.Graph: the current proof state. | |
Returns: | |
str: whether this construction is valid. If not, starts with "ERROR:". | |
""" | |
if string[-1] != ';': | |
return 'ERROR: must end with ;' | |
logging.info(f'PID={os.getpid()}: !! try_translate_constrained_to_construct: string=%s', string) | |
# sometimes the LM may return ill-formed result with multiple colons. | |
# example: | |
# | |
# napoleon2 | |
# a1 a2 a3 = triangle; c3 = s_angle a1 a2 c3 30, s_angle a2 a1 c3 150; c1 = s_angle a2 a3 c1 30, s_angle a3 a2 c1 150; c2 = s_angle a3 a1 c2 30, s_angle a1 a3 c2 150 ? cong c1 c2 c1 c3 | |
# | |
# in the process, | |
# I0210 17:58:01.513668 140016515833856 alphageometry.py:550] Decoding from {S} a : ; b : ; c : ; d : ^ a d a b 5. pi / 6. 00 ^ b d b a 1. pi / 6. 01 ; e : ^ b e b c 5. pi / 6. 02 ^ c e c b 1. pi / 6. 03 ; f : ^ a f a c 1. pi / 6. 04 ^ c f c a 5. pi / 6. 05 ? D e f e d {F1} x00 g : C a b g 06 D a g b g 07 ; x00 h : C c b h 08 D c h b h 09 ; x00 | |
# I0210 18:01:38.182158 140016515833856 alphageometry.py:384] !! try_translate_constrained_to_construct: string=i : C a c i 10 D a i c i 11 ? V d f {F1} x00 j : D g j h j 12 D h j i j 13 ; | |
#XXX | |
# str_parts = string.split(' : ') | |
# if len(str_parts) != 2: | |
# return f'ERROR: string has multiple colons: |{string}|' | |
mch = re.match('(.*?)( \? | \. \{)', string) | |
if mch : | |
strFixed = mch.group(1) + ';' | |
logging.info(f'ID={os.getpid()}: Bad LM output: {string}. Changed to {strFixed}') | |
string = strFixed | |
# sometimes the constraint in string is empty: | |
# 0407 17:11:35.470240 126383800963072 alphageometry.py:394] !! try_translate_constrained_to_construct: string=j : ; | |
hdprem = string.split(' : ') | |
if len(hdprem) !=2 or hdprem[1].strip()==';' : | |
logging.info(f'ID={os.getpid()}: Bad LM output: {string}. ERROR') | |
return f'ERROR: Bad LM output: {string}' | |
head, prem_str = hdprem | |
point = head.strip() | |
if len(point) != 1 or point == ' ': | |
return f'ERROR: invalid point name {point}' | |
existing_points = [p.name for p in g.all_points()] | |
if point in existing_points: | |
return f'ERROR: point {point} already exists.' | |
prem_toks = prem_str.split()[:-1] # remove the EOS ' ;' | |
prems = [[]] | |
for i, tok in enumerate(prem_toks): | |
if tok.isdigit(): | |
if i < len(prem_toks) - 1: | |
prems.append([]) | |
else: | |
prems[-1].append(tok) | |
if len(prems) > 2: | |
return 'ERROR: there cannot be more than two predicates.' | |
clause_txt = point + ' = ' | |
constructions = [] | |
for prem in prems: | |
name, *args = prem | |
if point not in args: | |
return f'ERROR: {point} not found in predicate args.' | |
if not check_valid_args(pt.map_symbol(name), args): | |
return 'ERROR: Invalid predicate ' + name + ' ' + ' '.join(args) | |
for a in args: | |
if a != point and a not in existing_points: | |
return f'ERROR: point {a} does not exist.' | |
try: | |
name, args = translate_constrained_to_constructive(point, name, args) | |
except: # pylint: disable=bare-except | |
return 'ERROR: Invalid predicate ' + name + ' ' + ' '.join(args) | |
if name == 'on_aline': | |
if args.count(point) > 1: | |
return f'ERROR: on_aline involves twice {point}' | |
constructions += [name + ' ' + ' '.join(args)] | |
clause_txt += ', '.join(constructions) | |
clause = pr.Clause.from_txt(clause_txt) | |
try: | |
g.copy().add_clause(clause, 0, DEFINITIONS) | |
except: # pylint: disable=bare-except | |
return 'ERROR: ' + traceback.format_exc() | |
return clause_txt | |
def insert_aux_to_premise(pstring: str, auxstring: str) -> str: | |
"""Insert auxiliary constructs from proof to premise. | |
Args: | |
pstring: str: describing the problem to solve. | |
auxstring: str: describing the auxiliar construction. | |
Returns: | |
str: new pstring with auxstring inserted before the conclusion. | |
""" | |
setup, goal = pstring.split(' ? ') | |
return setup + '; ' + auxstring + ' ? ' + goal | |
class BeamQueue: | |
"""Keep only the top k objects according to their values.""" | |
def __init__(self, max_size: int = 512): | |
self.queue = [] | |
self.max_size = max_size | |
def add(self, node: object, val: float) -> None: | |
"""Add a new node to this queue.""" | |
if len(self.queue) < self.max_size: | |
self.queue.append((val, node)) | |
return | |
# Find the minimum node: | |
min_idx, (min_val, _) = min(enumerate(self.queue), key=lambda x: x[1]) | |
# replace it if the new node has higher value. | |
if val > min_val: | |
self.queue[min_idx] = (val, node) | |
def __iter__(self): | |
for val, node in self.queue: | |
yield val, node | |
def __len__(self) -> int: | |
return len(self.queue) | |
#XXX | |
def bqsearch_init(): | |
global model | |
logging.info('Worker initializing. PID=%d', os.getpid()) | |
model = get_lm(_CKPT_PATH.value, _VOCAB_PATH.value) | |
def bqsearch(i_nd, srch_inputs, out_file) -> tuple[int, bool, list]: # ( iNode, solved, [ (node, score) ] ) | |
pid = os.getpid() | |
logging.info(f'Worker PID={pid} called for beam search node {i_nd}') | |
prev_score, (g, string, pstring) = srch_inputs | |
logging.info(f'Worker PID={pid}: Decoding from {string}') | |
outputs = model.beam_decode(string, eos_tokens=[';']) | |
# translate lm output to the constructive language. | |
# so that we can update the graph representing proof states: | |
translations = [ | |
try_translate_constrained_to_construct(o, g) | |
for o in outputs['seqs_str'] | |
] | |
# couple the lm outputs with its translations | |
candidates = zip(outputs['seqs_str'], translations, outputs['scores']) | |
# bring the highest scoring candidate first | |
candidates = reversed(list(candidates)) | |
ret = [] | |
for lm_out, translation, score in candidates: | |
logging.info(f'Worker PID={pid}: LM output (score={score}): "{lm_out}"') | |
logging.info(f'Worker PID={pid}: Translation: "{translation}"') | |
if translation.startswith('ERROR:'): | |
# the construction is invalid. | |
continue | |
# Update the constructive statement of the problem with the aux point: | |
candidate_pstring = insert_aux_to_premise(pstring, translation) | |
#XXX | |
logging.info(f'Worker PID={pid}: string=|{string}| lm_out=|{lm_out}|') | |
logging.info(f'Worker PID={pid}: Solving: "{candidate_pstring}"') | |
p_new = pr.Problem.from_txt(candidate_pstring) | |
# This is the new proof state graph representation: | |
g_new, _ = gh.Graph.build_problem(p_new, DEFINITIONS) | |
try: | |
if run_ddar(g_new, p_new, out_file): | |
logging.info('Worker PID={pid}: Solved.') | |
return (i_nd, True, None) | |
except Exception as e: | |
logging.info(f'Worker PID={pid}: Error in run_ddar: {e}') | |
# Add the candidate to the beam queue. | |
ret.append( [ | |
# The string for the new node is old_string + lm output + | |
# the special token asking for a new auxiliary point ' x00': | |
# node | |
(g_new, string + ' ' + lm_out + ' x00', candidate_pstring), | |
# the score of each node is sum of score of all nodes | |
# on the path to itself. For beam search, there is no need to | |
# normalize according to path length because all nodes in beam | |
# is of the same path length. | |
# val | |
prev_score + score ] | |
) | |
logging.info(f'Worker PID={pid} beam search node {i_nd}: returning') | |
return (i_nd, False, ret) | |
def run_alphageometry( | |
#XX model: lm.LanguageModelInference, | |
p: pr.Problem, | |
search_depth: int, | |
beam_size: int, | |
out_file: str, | |
) -> bool: | |
"""Simplified code to run AlphaGeometry proof search. | |
We removed all optimizations that are infrastructure-dependent, e.g. | |
parallelized model inference on multi GPUs, | |
parallelized DD+AR on multiple CPUs, | |
parallel execution of LM and DD+AR, | |
shared pool of CPU workers across different problems, etc. | |
Many other speed optimizations and abstractions are also removed to | |
better present the core structure of the proof search. | |
Args: | |
model: Interface with inference-related endpoints to JAX's model. | |
p: pr.Problem object describing the problem to solve. | |
search_depth: max proof search depth. | |
beam_size: beam size of the proof search. | |
out_file: path to output file if solution is found. | |
Returns: | |
boolean of whether this is solved. | |
""" | |
# translate the problem to a string of grammar that the LM is trained on. | |
string = p.setup_str_from_problem(DEFINITIONS) | |
# special tokens prompting the LM to generate auxiliary points. | |
string += ' {F1} x00' | |
# the graph to represent the proof state. | |
g, _ = gh.Graph.build_problem(p, DEFINITIONS) | |
# First we run the symbolic engine DD+AR: | |
if run_ddar(g, p, out_file): | |
return True | |
# ?? when pickling graph for some problems, the default recursion limit 1000 is not enough, | |
# got 'maximum recursion depth exceeded while pickling an object' error | |
sys.setrecursionlimit(10000) | |
# beam search for the proof | |
# each node in the search tree is a 3-tuple: | |
# (<graph representation of proof state>, | |
# <string for LM to decode from>, | |
# <original problem string>) | |
beam_queue = BeamQueue(max_size=beam_size) | |
# originally the beam search tree starts with a single node (a 3-tuple): | |
beam_queue.add( | |
node=(g, string, p.txt()), val=0.0 # value of the root node is simply 0. | |
) | |
pool = None | |
if _N_WORKSERS.value == 1: | |
bqsearch_init() | |
else: | |
pool = multiprocessing.Pool(_N_WORKSERS.value, bqsearch_init) | |
for depth in range(search_depth): | |
logging.info( | |
'Depth %s. There are %i nodes to expand:', depth, len(beam_queue) | |
) | |
for _, (_, string, _) in beam_queue: | |
logging.info(string) | |
new_queue = BeamQueue(max_size=beam_size) # to replace beam_queue. | |
if _N_WORKSERS.value==1: | |
for i, srch_inputs in enumerate(beam_queue): | |
_, solved, res = bqsearch(i, srch_inputs, out_file) | |
if solved: | |
return True | |
for node, val in res: | |
# Add the candidate to the beam queue. | |
new_queue.add(node, val) | |
# Note that the queue only maintain at most beam_size nodes | |
# so this new node might possibly be dropped depending on its value. | |
else: | |
jobs = [pool.apply_async(bqsearch, (i, srch_inputs, out_file)) for i, srch_inputs in enumerate(beam_queue)] | |
n_done = 0 | |
while n_done < len(beam_queue): | |
for i, jobres in enumerate(jobs): | |
if jobres and jobres.ready(): | |
n_done += 1 | |
jobs[i] = None | |
_, solved, res = jobres.get() | |
if solved: | |
# Clean up resources | |
pool.terminate() | |
pool.join() | |
return True | |
for node, val in res: | |
# Add the candidate to the beam queue. | |
new_queue.add(node, val) | |
# Note that the queue only maintain at most beam_size nodes | |
# so this new node might possibly be dropped depending on its value. | |
time.sleep(1) # Adjust wait time as needed | |
# replace the old queue with new queue before the new proof search depth. | |
beam_queue = new_queue | |
# Clean up resources | |
if pool: | |
pool.terminate() | |
pool.join() | |
return False | |
def main(_): | |
global DEFINITIONS | |
global RULES | |
# definitions of terms used in our domain-specific language. | |
DEFINITIONS = pr.Definition.from_txt_file(_DEFS_FILE.value, to_dict=True) | |
# load inference rules used in DD. | |
RULES = pr.Theorem.from_txt_file(_RULES_FILE.value, to_dict=True) | |
# when using the language model, | |
# point names will be renamed to alphabetical a, b, c, d, e, ... | |
# instead of staying with their original names, | |
# in order to match the synthetic training data generation. | |
need_rename = _MODE.value != 'ddar' | |
# load problems from the problems_file, | |
problems = pr.Problem.from_txt_file( | |
_PROBLEMS_FILE.value, to_dict=True, translate=need_rename | |
) | |
if _PROBLEM_NAME.value not in problems: | |
raise ValueError( | |
f'Problem name `{_PROBLEM_NAME.value}` ' | |
+ f'not found in `{_PROBLEMS_FILE.value}`' | |
) | |
this_problem = problems[_PROBLEM_NAME.value] | |
if _MODE.value == 'ddar': | |
g, _ = gh.Graph.build_problem(this_problem, DEFINITIONS) | |
run_ddar(g, this_problem, _OUT_FILE.value) | |
elif _MODE.value == 'alphageometry': | |
#XX model = get_lm(_CKPT_PATH.value, _VOCAB_PATH.value) | |
run_alphageometry( | |
#XX model, | |
this_problem, | |
_SEARCH_DEPTH.value, | |
_BEAM_SIZE.value, | |
_OUT_FILE.value, | |
) | |
else: | |
raise ValueError(f'Unknown FLAGS.mode: {_MODE.value}') | |
if __name__ == '__main__': | |
app.run(main) | |