Spaces:
Sleeping
Sleeping
NUM_EMBEDDINGS = 1024 | |
# Number of parameters = 152M | |
NUM_LAYERS = 12 | |
EMBED_DIM = 1024 | |
NUM_HEADS = 8 | |
HEAD_DIM = 128 | |
MLP_DIM = 4096 | |
transformer_layer.TransformerLayerGenerate: | |
num_heads = %NUM_HEADS | |
head_size = %HEAD_DIM | |
window_length = 1024 | |
use_long_xl_architecture = False | |
max_unrolled_windows = -1 # Always unroll. | |
relative_position_type = "t5" # Can be "fourier", "t5", or None. | |
use_causal_mask = True | |
attn_dropout_rate = %ATTN_DROPOUT_RATE # Attention matrix dropout. | |
memory_num_neighbors = 0 | |
dtype = %DTYPE | |
decoder_stack.DecoderStackGenerate: | |
num_layers = %NUM_LAYERS | |
embedding_size = %EMBED_DIM | |
embedding_stddev = 1.0 | |
layer_factory = @transformer_layer.TransformerLayerGenerate | |
dstack_window_length = 0 | |
use_absolute_positions = False | |
use_final_layernorm = True # Final layernorm before token lookup. | |
final_dropout_rate = %DROPOUT_RATE # Dropout before token lookup. | |
final_mlp_factory = None # Final MLP to predict target tokens. | |
recurrent_layer_indices = () | |
memory_factory = None # e.g. @memory_factory.memory_on_tpu_factory | |
memory_layer_indices = () | |
dtype = %DTYPE | |
models.DecoderOnlyLanguageModelGenerate: | |
num_heads = %NUM_HEADS | |
head_size = %HEAD_DIM | |
task_config = @decoder_stack.TransformerTaskConfig() | |
decoder_factory = @decoder_stack.DecoderStackGenerate | |
training_loop.Trainer: | |
model_definition = @models.DecoderOnlyLanguageModelGenerate | |