Spaces:
Sleeping
Sleeping
# Copyright 2023 DeepMind Technologies Limited | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Transformer language model generate mode.""" | |
from typing import Any, Tuple | |
import beam_search | |
import decoder_stack | |
import gin | |
import jax | |
import jax.numpy as jnp | |
from transformer import models | |
class DecoderOnlyLanguageModelGenerate(models.DecoderOnlyLanguageModel): | |
"""Decoder only language modeling in inference mode.""" | |
decoder_factory = decoder_stack.DecoderStackGenerate | |
num_heads: int = gin.REQUIRED | |
head_size: int = gin.REQUIRED | |
def get_fake_input(self) -> dict[str, Any]: | |
fake_input_dict = super().get_fake_input() | |
b = self.task_config.batch_size | |
n = self.num_heads | |
h = self.head_size | |
fake_input_dict.update({ | |
'dstate': tuple( | |
[{ | |
'current_index': jnp.array([0] * b, dtype=jnp.int32), | |
'keys': jnp.zeros((b, 2048, n, h), dtype=jnp.bfloat16), | |
'values': jnp.zeros((b, 2048, n, h), dtype=jnp.bfloat16), | |
'recurrent_kvq': None, | |
'relative_position_bias': jnp.zeros( | |
(b, n, 1, 1024), dtype=jnp.bfloat16 | |
), | |
}] | |
* 12 | |
), | |
'eos': jnp.zeros([1024], dtype=jnp.bfloat16), | |
'mask': jnp.ones([1024], dtype=jnp.bfloat16), | |
'length': 1, | |
'temperature': 1.0, | |
}) | |
return fake_input_dict | |
def __call__(self, inputs: ...) -> tuple[Any, dict[str, Any]]: | |
# Make sure this code is not used on untested cases. | |
if self.mode not in ['init', 'beam_search']: | |
raise ValueError(f'{type(self)} cannot do mode {self.mode}') | |
if self.decoder.supports_generate(): | |
raise ValueError(f'{type(self)}.decoder cannot supports_generate()') | |
self.decoder( | |
input_tokens=inputs['targets'][:, 0:1], | |
target_tokens=None, | |
start_of_sequence=inputs['start_of_sequence'], | |
) | |
b = inputs['targets'].shape[0] | |
no_start_of_seq = jnp.array([False] * b, dtype=jnp.bool_) | |
# This fn is used in both beam_search or topk_sampling. | |
def tokens_to_logits_fn( | |
input_token: jnp.ndarray, dstate: tuple[dict[str, jnp.ndarray], ...] | |
) -> tuple[jnp.ndarray, tuple[dict[str, jnp.ndarray], ...]]: | |
(logits, dstate, _) = self.decoder( | |
input_tokens=input_token, | |
target_tokens=None, | |
start_of_sequence=no_start_of_seq, | |
decoder_state=dstate, | |
) | |
return logits[:, -1, :], dstate | |
last_token = jax.lax.dynamic_slice_in_dim( | |
inputs['targets'], inputs['length'] - 1, 1, axis=1 | |
) | |
# last token is used to seed beam_search | |
inputs['targets'] = inputs['targets'][:, 0:-1] | |
dstate = jax.lax.cond( | |
inputs['start_of_sequence'][0], | |
lambda: self.generate(inputs)[0], | |
lambda: inputs['dstate'], | |
) | |
# Then we run beam search, init with last_token & dstate. | |
finished_seqs, finished_scores, dstate = beam_search.beam_search_flat( | |
last_token, | |
dstate, | |
tokens_to_logits_fn, | |
max_decode_len=512, | |
eos=inputs['eos'].reshape((1, 1, -1)), | |
mask=inputs['mask'].reshape((1, 1, -1)), | |
) | |
return 0.0, { | |
'finished_seqs': finished_seqs, | |
'finished_scores': finished_scores, | |
'dstate': dstate, | |
} | |
def generate( | |
self, inputs: ... | |
) -> tuple[tuple[dict[str, jnp.ndarray, ...], ...], jnp.ndarray]: | |
"""Generate an output sequence. | |
Args: | |
inputs: the same as argument to _call_. | |
Returns: | |
An array of generated tokens of shape (batch_size, sequence_length). | |
""" | |
input_tokens = inputs['targets'] # [b,seq_len] | |
start_of_sequence = inputs['start_of_sequence'] # [b] | |
target_tokens = jnp.pad(input_tokens[:, 1:], [(0, 0), (0, 1)]) | |
batch_size = target_tokens.shape[0] | |
# Assuming all sequences start at the same time. | |
start0 = inputs['start_of_sequence'][0] | |
dstate = jax.lax.cond( | |
start0, | |
lambda: self.decoder.init_decoder_state_vanilla( # pylint: disable=g-long-lambda | |
1024, start_of_sequence | |
), | |
lambda: inputs['dstate'], | |
) | |
first_token = input_tokens[:, 0:1] | |
no_start_of_seq = jnp.array([False] * batch_size, dtype=jnp.bool_) | |
temperature = 1 | |
if 'temperature' in inputs: | |
temperature = inputs['temperature'] | |
num_steps = inputs['length'] | |
if self.mode == 'beam_search': | |
num_steps -= 1 | |
def cond_fn(scan_state) -> jnp.bool_: | |
_, _, i, _ = scan_state | |
return i < num_steps | |
def loop_fn(scan_state: Any) -> Tuple[Any, Any, Any, Any]: | |
(dstate, input_token, i, _) = scan_state | |
(logits, dstate, _) = self.decoder( | |
input_tokens=input_token, | |
target_tokens=None, | |
start_of_sequence=no_start_of_seq, | |
decoder_state=dstate, | |
) | |
logits = logits / temperature | |
output_token = jax.lax.dynamic_slice_in_dim(target_tokens, i, 1, axis=1) | |
return (dstate, output_token, i + 1, logits) | |
# Scan over the sequence length. | |
dummy_logits = jnp.zeros((batch_size, 1, 1024)) | |
initial_scan_state = (dstate, first_token, 0, dummy_logits) | |
dstate, _, _, logits = jax.lax.while_loop( | |
cond_fn, loop_fn, initial_scan_state | |
) | |
return dstate, logits | |