# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for string manipulation in the DSL.""" MAP_SYMBOL = { 'T': 'perp', 'P': 'para', 'D': 'cong', 'S': 'simtri', 'I': 'circle', 'M': 'midp', 'O': 'cyclic', 'C': 'coll', '^': 'eqangle', '/': 'eqratio', '%': 'eqratio', '=': 'contri', 'X': 'collx', 'A': 'acompute', 'R': 'rcompute', 'Q': 'fixc', 'E': 'fixl', 'V': 'fixb', 'H': 'fixt', 'Z': 'fixp', 'Y': 'ind', } def map_symbol(c: str) -> str: return MAP_SYMBOL[c] def map_symbol_inv(c: str) -> str: return {v: k for k, v in MAP_SYMBOL.items()}[c] def _gcd(x: int, y: int) -> int: while y: x, y = y, x % y return x def simplify(n: int, d: int) -> tuple[int, int]: g = _gcd(n, d) return (n // g, d // g) def pretty2r(a: str, b: str, c: str, d: str) -> str: if b in (c, d): a, b = b, a if a == d: c, d = d, c return f'{a} {b} {c} {d}' def pretty2a(a: str, b: str, c: str, d: str) -> str: if b in (c, d): a, b = b, a if a == d: c, d = d, c return f'{a} {b} {c} {d}' def pretty_angle(a: str, b: str, c: str, d: str) -> str: if b in (c, d): a, b = b, a if a == d: c, d = d, c if a == c: return f'\u2220{b}{a}{d}' return f'\u2220({a}{b}-{c}{d})' def pretty_nl(name: str, args: list[str]) -> str: """Natural lang formatting a predicate.""" if name == 'aconst': a, b, c, d, y = args return f'{pretty_angle(a, b, c, d)} = {y}' if name == 'rconst': a, b, c, d, y = args return f'{a}{b}:{c}{d} = {y}' if name == 'acompute': a, b, c, d = args return f'{pretty_angle(a, b, c, d)}' if name in ['coll', 'C']: return '' + ','.join(args) + ' are collinear' if name == 'collx': return '' + ','.join(list(set(args))) + ' are collinear' if name in ['cyclic', 'O']: return '' + ','.join(args) + ' are concyclic' if name in ['midp', 'midpoint', 'M']: x, a, b = args return f'{x} is midpoint of {a}{b}' if name in ['eqangle', 'eqangle6', '^']: a, b, c, d, e, f, g, h = args return f'{pretty_angle(a, b, c, d)} = {pretty_angle(e, f, g, h)}' if name in ['eqratio', 'eqratio6', '/']: return '{}{}:{}{} = {}{}:{}{}'.format(*args) if name == 'eqratio3': a, b, c, d, o, o = args # pylint: disable=redeclared-assigned-name return f'S {o} {a} {b} {o} {c} {d}' if name in ['cong', 'D']: a, b, c, d = args return f'{a}{b} = {c}{d}' if name in ['perp', 'T']: if len(args) == 2: # this is algebraic derivation. ab, cd = args # ab = 'd( ... )' return f'{ab} \u27c2 {cd}' a, b, c, d = args return f'{a}{b} \u27c2 {c}{d}' if name in ['para', 'P']: if len(args) == 2: # this is algebraic derivation. ab, cd = args # ab = 'd( ... )' return f'{ab} \u2225 {cd}' a, b, c, d = args return f'{a}{b} \u2225 {c}{d}' if name in ['simtri2', 'simtri', 'simtri*']: a, b, c, x, y, z = args return f'\u0394{a}{b}{c} is similar to \u0394{x}{y}{z}' if name in ['contri2', 'contri', 'contri*']: a, b, c, x, y, z = args return f'\u0394{a}{b}{c} is congruent to \u0394{x}{y}{z}' if name in ['circle', 'I']: o, a, b, c = args return f'{o} is the circumcenter of \\Delta {a}{b}{c}' if name == 'foot': a, b, c, d = args return f'{a} is the foot of {b} on {c}{d}' def pretty(txt: str) -> str: """Pretty formating a predicate string.""" if isinstance(txt, str): txt = txt.split(' ') name, *args = txt if name == 'ind': return 'Y ' + ' '.join(args) if name in ['fixc', 'fixl', 'fixb', 'fixt', 'fixp']: return map_symbol_inv(name) + ' ' + ' '.join(args) if name == 'acompute': a, b, c, d = args return 'A ' + ' '.join(args) if name == 'rcompute': a, b, c, d = args return 'R ' + ' '.join(args) if name == 'aconst': a, b, c, d, y = args return f'^ {pretty2a(a, b, c, d)} {y}' if name == 'rconst': a, b, c, d, y = args return f'/ {pretty2r(a, b, c, d)} {y}' if name == 'coll': return 'C ' + ' '.join(args) if name == 'collx': return 'X ' + ' '.join(args) if name == 'cyclic': return 'O ' + ' '.join(args) if name in ['midp', 'midpoint']: x, a, b = args return f'M {x} {a} {b}' if name == 'eqangle': a, b, c, d, e, f, g, h = args return f'^ {pretty2a(a, b, c, d)} {pretty2a(e, f, g, h)}' if name == 'eqratio': a, b, c, d, e, f, g, h = args return f'/ {pretty2r(a, b, c, d)} {pretty2r(e, f, g, h)}' if name == 'eqratio3': a, b, c, d, o, o = args # pylint: disable=redeclared-assigned-name return f'S {o} {a} {b} {o} {c} {d}' if name == 'cong': a, b, c, d = args return f'D {a} {b} {c} {d}' if name == 'perp': if len(args) == 2: # this is algebraic derivation. ab, cd = args # ab = 'd( ... )' return f'T {ab} {cd}' a, b, c, d = args return f'T {a} {b} {c} {d}' if name == 'para': if len(args) == 2: # this is algebraic derivation. ab, cd = args # ab = 'd( ... )' return f'P {ab} {cd}' a, b, c, d = args return f'P {a} {b} {c} {d}' if name in ['simtri2', 'simtri', 'simtri*']: a, b, c, x, y, z = args return f'S {a} {b} {c} {x} {y} {z}' if name in ['contri2', 'contri', 'contri*']: a, b, c, x, y, z = args return f'= {a} {b} {c} {x} {y} {z}' if name == 'circle': o, a, b, c = args return f'I {o} {a} {b} {c}' if name == 'foot': a, b, c, d = args return f'F {a} {b} {c} {d}' return ' '.join(txt)