Spaces:
Running
Running
Upload 5 files
Browse files- aglib/meliad/metrics_summary.py +309 -0
- aglib/meliad/optimizer_config.py +281 -0
- aglib/meliad/requirements.txt +11 -0
- aglib/meliad/training_loop.py +757 -0
- aglib/meliad/training_task.py +216 -0
aglib/meliad/metrics_summary.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Google.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""Class to handle summarizing of metrics over multiple training steps."""
|
16 |
+
|
17 |
+
import abc
|
18 |
+
from typing import Any, Dict, Mapping, Optional, Tuple, Union
|
19 |
+
from absl import logging
|
20 |
+
from clu import metric_writers
|
21 |
+
import gin
|
22 |
+
import jax
|
23 |
+
from jax import numpy as jnp
|
24 |
+
import numpy as np
|
25 |
+
|
26 |
+
|
27 |
+
Array = Union[jnp.ndarray, np.ndarray]
|
28 |
+
|
29 |
+
|
30 |
+
class Aggregator(abc.ABC): # Superclass for type checks
|
31 |
+
|
32 |
+
@abc.abstractmethod
|
33 |
+
def add(self, value: Any):
|
34 |
+
pass
|
35 |
+
|
36 |
+
@abc.abstractmethod
|
37 |
+
def is_valid(self) -> bool:
|
38 |
+
pass
|
39 |
+
|
40 |
+
@abc.abstractmethod
|
41 |
+
def to_value(self):
|
42 |
+
pass
|
43 |
+
|
44 |
+
|
45 |
+
class _MeanAggregator(Aggregator):
|
46 |
+
"""Maintains the mean of incoming values."""
|
47 |
+
mean: float = 0.0
|
48 |
+
weight: float = 0.0
|
49 |
+
|
50 |
+
def add(self, new_value: Any):
|
51 |
+
"""Aggregates a new value into the mean."""
|
52 |
+
if np.ndim(new_value) == 0: # is a scalar; works with int, float, Array
|
53 |
+
val, weight = new_value, 1.0 # assuming weight 1 by default
|
54 |
+
else:
|
55 |
+
val, weight = new_value
|
56 |
+
if weight < 0.0:
|
57 |
+
raise ValueError("Adding value with negative weight.")
|
58 |
+
total_weight = self.weight + weight
|
59 |
+
if total_weight != 0.0 and weight > 0.0:
|
60 |
+
delta = (val - self.mean) * weight / total_weight
|
61 |
+
self.mean += delta
|
62 |
+
self.weight = total_weight
|
63 |
+
|
64 |
+
def is_valid(self) -> bool:
|
65 |
+
return self.weight > 0.0
|
66 |
+
|
67 |
+
def to_value(self):
|
68 |
+
assert self.weight > 0.0
|
69 |
+
return self.mean
|
70 |
+
|
71 |
+
|
72 |
+
class _SumAggregator(_MeanAggregator):
|
73 |
+
# We aggregate sum and mean in the same way as a tuple of the form:
|
74 |
+
# (weighted mean, total weights). "sum" can then be computed by
|
75 |
+
# multiplying the two values.
|
76 |
+
|
77 |
+
def is_valid(self) -> bool:
|
78 |
+
return True
|
79 |
+
|
80 |
+
def to_value(self):
|
81 |
+
return self.mean * self.weight
|
82 |
+
|
83 |
+
|
84 |
+
class _LastAggregator(Aggregator):
|
85 |
+
"""Remembers the last value given."""
|
86 |
+
last_value: Optional[float] = None
|
87 |
+
|
88 |
+
def add(self, new_value: Any):
|
89 |
+
self.last_value = new_value
|
90 |
+
|
91 |
+
def is_valid(self) -> bool:
|
92 |
+
return self.last_value is not None
|
93 |
+
|
94 |
+
def to_value(self):
|
95 |
+
assert self.last_value is not None
|
96 |
+
return self.last_value
|
97 |
+
|
98 |
+
|
99 |
+
@gin.configurable
|
100 |
+
class MetricsSummary:
|
101 |
+
"""Summarizes a set of a metrics over multiple training steps."""
|
102 |
+
|
103 |
+
def __init__(self,
|
104 |
+
metric_types: Mapping[str, str],
|
105 |
+
upscale_images: bool = True,
|
106 |
+
remove_outliers: bool = False):
|
107 |
+
"""Creates a MetricSummarizer.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
metric_types: Map from metrics to the type of summary. Types are:
|
111 |
+
"mean" = Compute the cumulative moving average.
|
112 |
+
"sum" = Compute the sum.
|
113 |
+
"last" = No summary, just return the last value.
|
114 |
+
upscale_images: Upscale small images for easier viewing.
|
115 |
+
remove_outliers: Remove outliers from histograms.
|
116 |
+
"""
|
117 |
+
self.metric_dict = {} # type: Dict[str, Aggregator]
|
118 |
+
self.text_dict = {}
|
119 |
+
self.metric_types = metric_types
|
120 |
+
self.upscale_images = upscale_images
|
121 |
+
self.remove_outliers = remove_outliers
|
122 |
+
self.constructor_map = {
|
123 |
+
"mean": _MeanAggregator,
|
124 |
+
"sum": _SumAggregator,
|
125 |
+
"last": _LastAggregator,
|
126 |
+
}
|
127 |
+
logging.debug("Registered metrics: %r", metric_types)
|
128 |
+
|
129 |
+
def current_metric_dict(self) -> Mapping[str, Aggregator]:
|
130 |
+
return self.metric_dict
|
131 |
+
|
132 |
+
def _is_image(self, image: Array) -> bool:
|
133 |
+
if image.ndim != 4:
|
134 |
+
return False
|
135 |
+
# Greyscale or RGB image.
|
136 |
+
return image.shape[-1] == 1 or image.shape[-1] == 3
|
137 |
+
|
138 |
+
def _upscale_image(self, image: Array) -> Array:
|
139 |
+
"""Upscale small images to more pixels, for easier viewing."""
|
140 |
+
if not self.upscale_images:
|
141 |
+
return image
|
142 |
+
assert image.ndim == 4 # (num_images, ysize, xsize, num_channels)
|
143 |
+
ys = image.shape[1]
|
144 |
+
xs = image.shape[2]
|
145 |
+
if xs > 512 or ys > 512:
|
146 |
+
return image # No scaling.
|
147 |
+
elif xs > 256 or ys > 256:
|
148 |
+
scale = 2
|
149 |
+
else:
|
150 |
+
scale = 4
|
151 |
+
yidx = np.arange(ys * scale) // scale
|
152 |
+
xidx = np.arange(xs * scale) // scale
|
153 |
+
scaled_image = image[:, yidx, :, :][:, :, xidx, :]
|
154 |
+
return scaled_image
|
155 |
+
|
156 |
+
def _remove_outliers(self, v, std_range: float = 4):
|
157 |
+
if not self.remove_outliers:
|
158 |
+
return v
|
159 |
+
v_mean = np.mean(v)
|
160 |
+
v_std = np.std(v)
|
161 |
+
return np.where(np.abs(v) > (v_std * std_range), v_mean, v)
|
162 |
+
|
163 |
+
@staticmethod
|
164 |
+
def merge_replicated_metrics(device_metrics: Mapping[str, Any],
|
165 |
+
metric_types: Mapping[str, str]):
|
166 |
+
"""Merge metrics across devices by psum over "batch" axis.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
device_metrics: dictionary of device metrics.
|
170 |
+
metric_types: map from the metric name to { "mean", "sum" }
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
A dictionary of metrics.
|
174 |
+
"""
|
175 |
+
logging.info("Merging metrics across devices %r: ",
|
176 |
+
[(k, metric_types[k] if k in metric_types else None)
|
177 |
+
for k in device_metrics.keys()])
|
178 |
+
|
179 |
+
def aggregate_sum(value: Array) -> Array:
|
180 |
+
assert not isinstance(value, tuple), (
|
181 |
+
"Weighted sums are not supported when aggregating over devices.")
|
182 |
+
return jax.lax.psum(value, axis_name="batch")
|
183 |
+
|
184 |
+
def aggregate_mean(value: Array, weight: Array) -> Tuple[Array, Array]:
|
185 |
+
weighted_value = value * weight
|
186 |
+
weighted_value = jax.lax.psum(weighted_value, axis_name="batch")
|
187 |
+
weight = jax.lax.psum(weight, axis_name="batch")
|
188 |
+
return weighted_value / (weight + 1.0e-6), weight
|
189 |
+
|
190 |
+
aggregated_metrics = dict(device_metrics)
|
191 |
+
for k, value in aggregated_metrics.items():
|
192 |
+
if k not in metric_types:
|
193 |
+
# If no metric type is given, metric remains untouched.
|
194 |
+
continue
|
195 |
+
if metric_types[k] == "sum":
|
196 |
+
aggregated_metrics[k] = aggregate_sum(value)
|
197 |
+
elif metric_types[k] == "mean":
|
198 |
+
if not isinstance(aggregated_metrics[k], tuple):
|
199 |
+
logging.info("Metric '%s' has no weight; assuming 1.0.", k)
|
200 |
+
value = (value, jnp.array(1.0))
|
201 |
+
aggregated_metrics[k] = aggregate_mean(*value)
|
202 |
+
else:
|
203 |
+
raise ValueError("Can only aggregate 'sum' and 'mean' over devices. "
|
204 |
+
f"Got {metric_types[k]}.")
|
205 |
+
return aggregated_metrics
|
206 |
+
|
207 |
+
def _new_aggregator(self, key) -> Aggregator:
|
208 |
+
if key in self.metric_types:
|
209 |
+
return self.constructor_map[self.metric_types[key]]()
|
210 |
+
else:
|
211 |
+
# TODO(mrabe): The default to last_value is not obvious. Force all metric
|
212 |
+
# types to be given explicitly.
|
213 |
+
logging.debug("No metric type for accumulator: %s", key)
|
214 |
+
return _LastAggregator()
|
215 |
+
|
216 |
+
def add(self, metrics: Mapping[str, Any]):
|
217 |
+
"""Add metrics from the current training step to the summary.
|
218 |
+
|
219 |
+
Args:
|
220 |
+
metrics: Dictionary of metrics.
|
221 |
+
"""
|
222 |
+
for k, new_value in metrics.items():
|
223 |
+
if k not in self.metric_dict:
|
224 |
+
self.metric_dict[k] = self._new_aggregator(k)
|
225 |
+
self.metric_dict[k].add(new_value)
|
226 |
+
|
227 |
+
def add_text(self, text_metrics: Mapping[str, str]):
|
228 |
+
"""Add text metrics from the current step to the summary."""
|
229 |
+
for (k, v) in text_metrics.items():
|
230 |
+
self.text_dict[k] = str(v)
|
231 |
+
|
232 |
+
def empty(self):
|
233 |
+
"""Return true if there are no summaries to write."""
|
234 |
+
return not (self.metric_dict or self.text_dict)
|
235 |
+
|
236 |
+
def clear(self):
|
237 |
+
"""Clear acculumated summaries."""
|
238 |
+
self.metric_dict = {}
|
239 |
+
self.text_dict = {}
|
240 |
+
|
241 |
+
def write(self, writer: metric_writers.MetricWriter, step: int, prefix: str):
|
242 |
+
"""Write metrics using summary_writer, and clear all summaries."""
|
243 |
+
if self.empty():
|
244 |
+
return
|
245 |
+
|
246 |
+
# Special logic for organizing metrics under tensorboard.
|
247 |
+
# Tensorboard has top-level groups, but doesn't have subgroups.
|
248 |
+
# Scalars are put into separate top-level groups for easier viewing.
|
249 |
+
# e.g. all scalars in "train", "test", etc.
|
250 |
+
# For images, each set of images should be a different top-level group,
|
251 |
+
# otherwise all images will get tossed into a single group under,
|
252 |
+
# e.g. "generate".
|
253 |
+
if prefix:
|
254 |
+
s_prefix = prefix + "/"
|
255 |
+
i_prefix = prefix + "_"
|
256 |
+
else:
|
257 |
+
# Each prefix is stored in a separate subdirectory already.
|
258 |
+
s_prefix = ""
|
259 |
+
i_prefix = ""
|
260 |
+
|
261 |
+
# Split metrics into different types.
|
262 |
+
scalars = {}
|
263 |
+
images = {}
|
264 |
+
histograms = {}
|
265 |
+
text_dict = {}
|
266 |
+
|
267 |
+
# Sort metrics into scalars, images, text, and histograms.
|
268 |
+
for k, aggregator in self.metric_dict.items():
|
269 |
+
if not isinstance(aggregator, Aggregator):
|
270 |
+
raise ValueError("Internal error: metric_dict should contain only "
|
271 |
+
"_Aggregator objects; contained %s" % aggregator)
|
272 |
+
if not aggregator.is_valid():
|
273 |
+
raise ValueError(f"No valid value for metric {k}.")
|
274 |
+
|
275 |
+
v = aggregator.to_value()
|
276 |
+
|
277 |
+
s_key = s_prefix + k
|
278 |
+
i_key = i_prefix + k
|
279 |
+
|
280 |
+
finite_mask = np.isfinite(v)
|
281 |
+
if not np.all(finite_mask):
|
282 |
+
logging.warning("Item %s contains non-finite elements.", k)
|
283 |
+
v = np.where(finite_mask, v, np.zeros_like(v))
|
284 |
+
if v is None:
|
285 |
+
logging.warning("Invalid value for %s", k)
|
286 |
+
elif np.ndim(v) == 0:
|
287 |
+
scalars[s_key] = v
|
288 |
+
elif self._is_image(v):
|
289 |
+
images[i_key] = self._upscale_image(v)
|
290 |
+
else:
|
291 |
+
histograms[s_key] = self._remove_outliers(v)
|
292 |
+
|
293 |
+
# Handle text data.
|
294 |
+
for (k, v) in self.text_dict.items():
|
295 |
+
s_key = s_prefix + k
|
296 |
+
text_dict[s_key] = v
|
297 |
+
|
298 |
+
# Write metrics.
|
299 |
+
if scalars:
|
300 |
+
writer.write_scalars(step, scalars)
|
301 |
+
if images:
|
302 |
+
writer.write_images(step, images)
|
303 |
+
if histograms:
|
304 |
+
writer.write_histograms(step, histograms)
|
305 |
+
if text_dict:
|
306 |
+
writer.write_texts(step, text_dict)
|
307 |
+
|
308 |
+
# Clear accumulated summaries.
|
309 |
+
self.clear()
|
aglib/meliad/optimizer_config.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Google.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""Gin configurable optimizer definitions.
|
16 |
+
"""
|
17 |
+
|
18 |
+
from typing import Any, Optional
|
19 |
+
|
20 |
+
from absl import logging
|
21 |
+
from flax import optim
|
22 |
+
from flax import struct
|
23 |
+
import gin
|
24 |
+
import jax.numpy as jnp
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
|
28 |
+
OptimizerDef = Any
|
29 |
+
|
30 |
+
|
31 |
+
@struct.dataclass
|
32 |
+
class OptimizerConfig:
|
33 |
+
"""Base class for optimizer configurations."""
|
34 |
+
|
35 |
+
learning_rate: float = 0.01 # All optimizers have a learning rate.
|
36 |
+
|
37 |
+
def create_optimizer_def(self) -> OptimizerDef:
|
38 |
+
raise ValueError("Not implemented.")
|
39 |
+
|
40 |
+
|
41 |
+
@gin.configurable
|
42 |
+
@struct.dataclass
|
43 |
+
class AdamConfig(OptimizerConfig):
|
44 |
+
"""Creates and configures the Adam optimizer."""
|
45 |
+
|
46 |
+
# Adam does not use parameter scale, and thus requires a smaller lrate.
|
47 |
+
# This will be multiplied by the learning rate schedule.
|
48 |
+
learning_rate: float = 0.05
|
49 |
+
|
50 |
+
beta1: float = 0.9 # For moving average of gradient.
|
51 |
+
beta2: float = 0.98 # For moving average of gradient magnitude.
|
52 |
+
weight_decay_rate: float = 0.0 # Relative to learning rate.
|
53 |
+
|
54 |
+
def create_optimizer_def(self) -> optim.OptimizerDef:
|
55 |
+
logging.info("Using Adam Optimizer. lr=%f, b1=%f, b2=%f",
|
56 |
+
self.learning_rate, self.beta1, self.beta2)
|
57 |
+
return optim.Adam(beta1=self.beta1,
|
58 |
+
beta2=self.beta2,
|
59 |
+
weight_decay=self.weight_decay_rate)
|
60 |
+
|
61 |
+
|
62 |
+
@gin.configurable
|
63 |
+
@struct.dataclass
|
64 |
+
class FlaxAdafactorConfig(OptimizerConfig):
|
65 |
+
"""Creates and configures the Adafactor optimizer."""
|
66 |
+
|
67 |
+
# Adafactor scales gradients according to parameter scale.
|
68 |
+
# This will be multiplied by the learning rate schedule.
|
69 |
+
learning_rate: float = 1.0
|
70 |
+
beta1: Optional[float] = 0.9 # Enables momentum with extra memory cost.
|
71 |
+
|
72 |
+
def create_optimizer_def(self) -> optim.OptimizerDef:
|
73 |
+
# Use wd_lr_exponent to get weight_decay relative to learning rate.
|
74 |
+
logging.info("Using Flax Adafactor Optimizer. lr=%f, b1=%f",
|
75 |
+
self.learning_rate, self.beta1)
|
76 |
+
return optim.Adafactor(beta1=self.beta1)
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
# ----------------------------------------------------------------------------
|
82 |
+
# Learning rate schedules for use with any optimizer.
|
83 |
+
#
|
84 |
+
# In keeping with the Chinchilla model: https://arxiv.org/abs/2203.15556.
|
85 |
+
# A learning rate schedule is a function that decays the learning rate from
|
86 |
+
# step zero to max_steps. The desired maximum number of steps must be set at
|
87 |
+
# the start of training.
|
88 |
+
# ----------------------------------------------------------------------------
|
89 |
+
|
90 |
+
|
91 |
+
@gin.configurable
|
92 |
+
def lr_constant(step: jnp.ndarray, max_steps: int,
|
93 |
+
learning_rate: float = 0.01) -> jnp.ndarray:
|
94 |
+
"""Returns constant_lr on each step.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
step: The current training step (unused).
|
98 |
+
max_steps: Unused.
|
99 |
+
learning_rate: The constant learning rate to use.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
The learning rate for the current step.
|
103 |
+
"""
|
104 |
+
del step
|
105 |
+
del max_steps
|
106 |
+
return jnp.asarray(learning_rate, dtype=jnp.float32)
|
107 |
+
|
108 |
+
|
109 |
+
@gin.configurable
|
110 |
+
def lr_rsqrt_decay_std(step: jnp.ndarray, max_steps: int,
|
111 |
+
max_lr: Optional[float] = None) -> jnp.ndarray:
|
112 |
+
"""Inverse square root decay function: LR = 1/sqrt(step).
|
113 |
+
|
114 |
+
Provided for compatibility. No min_lr, and it ignores max_steps.
|
115 |
+
Should be used with warmup: pass step = max(step, warmup_steps).
|
116 |
+
Maximum learning rate is 1/sqrt(warmup_steps) ~= 0.03 for 1000 warmup steps.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
step: The current training step.
|
120 |
+
max_steps: Unused.
|
121 |
+
max_lr: If specified, learning rate will be clipped to the maximum value.
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
The learning rate for the current step.
|
125 |
+
"""
|
126 |
+
# This function implements standard rsqrt decay as used in the memorizing
|
127 |
+
# and block-recurrent transformer papers, (https://arxiv.org/abs/2203.08913,
|
128 |
+
# https://arxiv.org/abs/2203.07852) which does not decay to a specified
|
129 |
+
# minimum learning rate over max_steps.
|
130 |
+
del max_steps
|
131 |
+
|
132 |
+
# Avoid divide by zero; force at least 100 warmup steps and a max LR of 0.1.
|
133 |
+
step = jnp.maximum(step, 100.0)
|
134 |
+
lrate = 1.0 / jnp.sqrt(step)
|
135 |
+
if max_lr is not None:
|
136 |
+
lrate = jnp.minimum(lrate, max_lr) # Clip to max_lr
|
137 |
+
return lrate
|
138 |
+
|
139 |
+
|
140 |
+
@gin.configurable
|
141 |
+
def lr_rsqrt_decay(step: jnp.ndarray, max_steps: int,
|
142 |
+
max_lr: float = 0.05,
|
143 |
+
min_lr: float = 0.001) -> jnp.ndarray:
|
144 |
+
"""Inverse sqrt decay from max_lr to min_lr over max_steps.
|
145 |
+
|
146 |
+
This function implements rsqrt decay, but adjusts the decay rate so that
|
147 |
+
min_lr is reached at max_steps.
|
148 |
+
|
149 |
+
Note: with a warmup period, the maximum LR produced by the schedule is:
|
150 |
+
min_lr / sqrt(warmup_steps / max_steps), which may be less than max_lr.
|
151 |
+
e.g. if min_lr is 0.001, then the maximum LR will be 0.01 for
|
152 |
+
warmup_steps=1000 and max_steps=100_000.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
step: The current training step.
|
156 |
+
max_steps: The step value at the end of training.
|
157 |
+
max_lr: LR will be clipped to max at the start of training.
|
158 |
+
min_lr: LR to output at max_steps.
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
The learning rate for the current step.
|
162 |
+
"""
|
163 |
+
assert max_lr > min_lr
|
164 |
+
|
165 |
+
# Avoid divide by zero; force at least 100 warmup steps and a max LR of 0.1.
|
166 |
+
step = jnp.maximum(step, 100.0)
|
167 |
+
lrate = min_lr / jnp.sqrt(step / float(max_steps))
|
168 |
+
lrate = jnp.minimum(lrate, max_lr) # Clip to max_lr
|
169 |
+
return lrate
|
170 |
+
|
171 |
+
|
172 |
+
@gin.configurable
|
173 |
+
def lr_exponential_decay(step: jnp.ndarray, max_steps: int,
|
174 |
+
max_lr: float = 0.01,
|
175 |
+
min_lr: float = 0.001) -> jnp.ndarray:
|
176 |
+
"""Exponential decay from max_lr to min_lr over max_steps.
|
177 |
+
|
178 |
+
Continues to decay at the same rate after max_steps.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
step: The current training step.
|
182 |
+
max_steps: The step value at the end of training.
|
183 |
+
max_lr: LR to output at step 0.
|
184 |
+
min_lr: LR to output at max_steps.
|
185 |
+
|
186 |
+
Returns:
|
187 |
+
The learning rate for the current step.
|
188 |
+
"""
|
189 |
+
assert max_lr > min_lr
|
190 |
+
|
191 |
+
lrate = max_lr * jnp.power(min_lr / max_lr, step / float(max_steps))
|
192 |
+
return lrate
|
193 |
+
|
194 |
+
|
195 |
+
@gin.configurable
|
196 |
+
def lr_linear_decay(step: jnp.ndarray, max_steps: int,
|
197 |
+
max_lr: float = 0.01,
|
198 |
+
min_lr: float = 0.001,
|
199 |
+
decay_after: bool = True) -> jnp.ndarray:
|
200 |
+
"""Linear decay from max_lr to min_lr over max_steps.
|
201 |
+
|
202 |
+
If decay_after, then LR will continue to decay exponentially by a factor
|
203 |
+
of 2 every max_steps after the linear decay.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
step: The current training step.
|
207 |
+
max_steps: The step value at the end of training.
|
208 |
+
max_lr: LR to output at step 0.
|
209 |
+
min_lr: LR to output at max_steps.
|
210 |
+
decay_after: If true, do exponential decay after the linear decay,
|
211 |
+
by a factor of 2 every max_steps.
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
The learning rate for the current step.
|
215 |
+
"""
|
216 |
+
assert max_lr > min_lr
|
217 |
+
|
218 |
+
lrate = min_lr + (max_lr - min_lr) * ((max_steps - step) / max_steps)
|
219 |
+
lrate = jnp.maximum(lrate, min_lr)
|
220 |
+
|
221 |
+
if decay_after:
|
222 |
+
exp_lrate = lr_exponential_decay(step, max_steps,
|
223 |
+
max_lr=2*min_lr, min_lr=min_lr)
|
224 |
+
lrate = jnp.where(step < max_steps, lrate, exp_lrate)
|
225 |
+
|
226 |
+
return lrate
|
227 |
+
|
228 |
+
|
229 |
+
@gin.configurable
|
230 |
+
def lr_cosine_decay(step: jnp.ndarray, max_steps: int,
|
231 |
+
max_lr: float = 0.01,
|
232 |
+
min_lr: float = 0.001,
|
233 |
+
decay_after: bool = True,
|
234 |
+
spike_steps: int = 0,
|
235 |
+
spike_lr: float = 0.0) -> jnp.ndarray:
|
236 |
+
"""Cosine decay function from max_lr to min_lr over max_steps.
|
237 |
+
|
238 |
+
Used in the Chinchilla model: https://arxiv.org/abs/2203.15556.
|
239 |
+
|
240 |
+
If decay_after, then LR will continue to decay exponentially by a factor
|
241 |
+
of 2 every max_steps after the original ramp.
|
242 |
+
|
243 |
+
If spike_steps > 0, there will be an initial linear decay from spike_lr
|
244 |
+
down to max_lr over the first spike_steps steps. This implements a brief
|
245 |
+
period of higher LR early in training, similar to the curve for rsqrt_decay.
|
246 |
+
The model can generally tolerate a high LR early in training, and make a
|
247 |
+
lot of progress very quickly. Try spike_steps=10_000, spike_lr = 0.04.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
step: The current training step.
|
251 |
+
max_steps: The number of training steps to decay over.
|
252 |
+
max_lr: The maximum learning rate at the start of training.
|
253 |
+
min_lr: The minimum learning rate at the end of training.
|
254 |
+
decay_after: If true, do exponential decay after the cosine day,
|
255 |
+
by a factor of 2 every max_steps.
|
256 |
+
spike_steps: The number of steps for the initial spike.
|
257 |
+
spike_lr: The maximum LR during the initial spike.
|
258 |
+
|
259 |
+
Returns:
|
260 |
+
The learning rate for the current step.
|
261 |
+
"""
|
262 |
+
assert max_lr > min_lr
|
263 |
+
|
264 |
+
pi = float(np.pi)
|
265 |
+
step_ramp = jnp.minimum(step, max_steps) / max_steps # ramp: 0 to 1.0.
|
266 |
+
|
267 |
+
lrate = (1 + jnp.cos(pi * step_ramp)) * 0.5 # ranges from 1 to 0.
|
268 |
+
lrate = min_lr + lrate * (max_lr - min_lr)
|
269 |
+
|
270 |
+
if spike_steps > 0 and spike_lr > 0.0:
|
271 |
+
assert spike_lr > max_lr
|
272 |
+
spike_lrate = spike_lr * ((spike_steps - step) / spike_steps)
|
273 |
+
lrate = jnp.maximum(lrate, spike_lrate)
|
274 |
+
|
275 |
+
if decay_after:
|
276 |
+
exp_lrate = lr_exponential_decay(step, max_steps,
|
277 |
+
max_lr=2*min_lr, min_lr=min_lr)
|
278 |
+
lrate = jnp.where(step < max_steps, lrate, exp_lrate)
|
279 |
+
|
280 |
+
return lrate
|
281 |
+
|
aglib/meliad/requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py>=1.0.0
|
2 |
+
clu>=0.0.7
|
3 |
+
gin-config>=0.5.0
|
4 |
+
flax>=0.5.0
|
5 |
+
jax>=0.3.13
|
6 |
+
optax>=0.1.2
|
7 |
+
numpy>=1.22.4
|
8 |
+
sentencepiece>=0.1.96
|
9 |
+
seqio>=0.0.7
|
10 |
+
tensorflow>=2.9.1
|
11 |
+
tensorflow-datasets>=4.5.2
|
aglib/meliad/training_loop.py
ADDED
@@ -0,0 +1,757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Google.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""Generic JAX training loop for experiments."""
|
16 |
+
|
17 |
+
import functools
|
18 |
+
import os
|
19 |
+
from typing import (Any, Callable, Dict, Optional, Sequence, Tuple)
|
20 |
+
|
21 |
+
from absl import logging
|
22 |
+
from clu import metric_writers
|
23 |
+
import flax
|
24 |
+
from flax import jax_utils
|
25 |
+
from flax import linen as nn
|
26 |
+
from flax import struct
|
27 |
+
from flax.training import checkpoints
|
28 |
+
import gin
|
29 |
+
import jax
|
30 |
+
import jax.numpy as jnp
|
31 |
+
import metrics_summary
|
32 |
+
import optimizer_config as opt_config
|
33 |
+
import training_task
|
34 |
+
import numpy as np
|
35 |
+
import tensorflow.compat.v2 as tf
|
36 |
+
|
37 |
+
|
38 |
+
PRNGKeys = training_task.PRNGKeys
|
39 |
+
TrainState = training_task.TrainState
|
40 |
+
TrainingTask = training_task.TrainingTask
|
41 |
+
StepFunction = training_task.StepFunction
|
42 |
+
Metrics = training_task.Metrics
|
43 |
+
MetricWriter = metric_writers.MetricWriter
|
44 |
+
MetricsSummary = metrics_summary.MetricsSummary
|
45 |
+
|
46 |
+
|
47 |
+
gfile = tf.io.gfile
|
48 |
+
unfreeze = flax.core.unfreeze
|
49 |
+
flatten_dict = flax.traverse_util.flatten_dict
|
50 |
+
should_run = training_task.should_run
|
51 |
+
|
52 |
+
|
53 |
+
# TODO(cstaats): Use a Protocol to specify that it must be possible to call
|
54 |
+
# the function with parameters (step: int, mode: str). This won't be feasible
|
55 |
+
# until we start using Python 3.8 or later.
|
56 |
+
StepModeCallable = Callable[..., None]
|
57 |
+
|
58 |
+
|
59 |
+
# This variable should *only* be set from register_interstep_callbacks.
|
60 |
+
_interstep_callbacks: Optional[Tuple[StepModeCallable, ...]] = None
|
61 |
+
|
62 |
+
|
63 |
+
@gin.configurable
|
64 |
+
def register_interstep_callbacks(**kwargs: StepModeCallable) -> None:
|
65 |
+
"""Populates _interstep_callbacks from gin.
|
66 |
+
|
67 |
+
This function should be called exactly ONCE and that call should happen AFTER
|
68 |
+
flag initialization (and more specifically, after gin parsing). And the caller
|
69 |
+
should NOT specify any arguments.
|
70 |
+
|
71 |
+
In gin configurations, a callback can be specified with an arbitrary name
|
72 |
+
like so:
|
73 |
+
|
74 |
+
register_interstep_callbacks.my_callback_name = @my_callback_function
|
75 |
+
|
76 |
+
Multiple callbacks can be registered without overriding each other as long as
|
77 |
+
they all have different names. Conversely, if you *want* to override a
|
78 |
+
callback, you need to give that callback the same name.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
**kwargs: Specified by gin. Each argument should be a function (callable)
|
82 |
+
that can be called as my_function(step, mode), where step is an int and
|
83 |
+
mode is a str.
|
84 |
+
|
85 |
+
Raises:
|
86 |
+
ValueError: Raised on the second (and any subsequent) function call.
|
87 |
+
"""
|
88 |
+
global _interstep_callbacks
|
89 |
+
logging.info("registering functions: %s", kwargs.keys())
|
90 |
+
if _interstep_callbacks is not None:
|
91 |
+
raise ValueError("register_interstep_callbacks may only be called once.")
|
92 |
+
_interstep_callbacks = tuple(kwargs.values())
|
93 |
+
|
94 |
+
|
95 |
+
def clear_interstep_callbacks():
|
96 |
+
"""Clear all registered callbacks, so that new ones can be registered."""
|
97 |
+
global _interstep_callbacks
|
98 |
+
_interstep_callbacks = None
|
99 |
+
|
100 |
+
|
101 |
+
def run_interstep_callbacks(mode: str, step: int, sub_step: int = 0):
|
102 |
+
"""Run the registered callbacks.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
mode: mode of the task to execute callbacks for.
|
106 |
+
step: training step number.
|
107 |
+
sub_step: For tasks that execute multiple iterations within a step.
|
108 |
+
E.g. a test cycle that runs multiple testing steps.
|
109 |
+
"""
|
110 |
+
for func in _interstep_callbacks:
|
111 |
+
func(sub_step or step, mode)
|
112 |
+
|
113 |
+
|
114 |
+
@gin.configurable
|
115 |
+
@struct.dataclass
|
116 |
+
class Trainer:
|
117 |
+
"""Implements a JAX training loop."""
|
118 |
+
|
119 |
+
# Returns a Flax module for the model.
|
120 |
+
# Takes a single argument mode, which can be "test", "train", or "generate".
|
121 |
+
model_definition: Any = gin.REQUIRED
|
122 |
+
|
123 |
+
# Iterator over trainining data.
|
124 |
+
get_training_dataset_iterator: Callable[[], Any] = gin.REQUIRED
|
125 |
+
|
126 |
+
# Iterator over test data.
|
127 |
+
get_test_dataset_iterator: Optional[Callable[[], Any]] = None
|
128 |
+
|
129 |
+
workdir: str = "" # Working directory for checkpoints.
|
130 |
+
load_dir: str = "" # Optional directory to load model.
|
131 |
+
num_steps: int = 100000 # Number of steps to train.
|
132 |
+
status_every_steps: int = 10 # Log step number every N steps.
|
133 |
+
log_every_steps: int = 100 # Log scalar data every N steps.
|
134 |
+
test_every_steps: int = 10 # Test model every N steps.
|
135 |
+
num_test_steps: int = 1 # Number of iterations to test.
|
136 |
+
generate_every_steps: int = 1000 # Generate examples every N steps.
|
137 |
+
print_input_every_steps: int = 1000 # Print example data every N steps.
|
138 |
+
|
139 |
+
save_checkpoints: bool = True # Save training checkpoints
|
140 |
+
checkpoint_every_steps: int = 5000 # Save checkpoints every N steps.
|
141 |
+
restore_checkpoints: bool = True # Restore from previous checkpoint.
|
142 |
+
restore_state_variables: bool = True # Restore TrainState.state from chkpt.
|
143 |
+
|
144 |
+
# Record metrics for "train", "test", etc. in separate directories.
|
145 |
+
# Otherwise they will be saved with separate prefixes.
|
146 |
+
use_separate_metric_directories: bool = True
|
147 |
+
|
148 |
+
# Optimizer options.
|
149 |
+
optimizer_factory: opt_config.OptimizerConfig = gin.REQUIRED
|
150 |
+
learning_rate_schedule: Callable[[jnp.ndarray, int], jnp.ndarray] = (
|
151 |
+
opt_config.lr_cosine_decay)
|
152 |
+
|
153 |
+
# Maximum steps for the LR schedule. Zero means use num_steps.
|
154 |
+
max_scheduled_steps: int = 0
|
155 |
+
warmup_steps: int = 1000 # Number of warmup steps.
|
156 |
+
learning_rate_multiplier: float = 1.0 # Used to scale the learning rate.
|
157 |
+
|
158 |
+
random_seed: int = 42 # Initial random seed.
|
159 |
+
|
160 |
+
# Names of random number generators used by the model.
|
161 |
+
rng_key_names: Optional[Sequence[str]] = ("dropout",)
|
162 |
+
|
163 |
+
# Debug options.
|
164 |
+
replicate_mode: bool = True # pmap over multiple replicas.
|
165 |
+
trace_debug_mode: bool = False # Run in eager mode to trace results.
|
166 |
+
print_variables: bool = False # Dump parameters/variables to stdout.
|
167 |
+
|
168 |
+
# Function to compute additional summary information.
|
169 |
+
# Takes a MetricsSummary object and a mode string (e.g. "test") as arguments,
|
170 |
+
# returns a MetricsSummary object.
|
171 |
+
process_summaries_function: Optional[Callable[[Any, str], Any]] = None
|
172 |
+
|
173 |
+
# Function to pretty print the input for each training step.
|
174 |
+
pretty_print_input_function: Optional[Callable[[Any], Any]] = None
|
175 |
+
|
176 |
+
# Classes to use for summarizing metrics.
|
177 |
+
metrics_summary_factory: Any = metrics_summary.MetricsSummary
|
178 |
+
extra_summaries_fn: training_task.ExtraSummariesFunction = (
|
179 |
+
lambda mode, step: dict())
|
180 |
+
|
181 |
+
post_save_checkpoint_fn: Callable[[str, int], None] = lambda mode, step: None
|
182 |
+
post_load_checkpoint_fn: Callable[[str, int], None] = lambda mode, step: None
|
183 |
+
|
184 |
+
def learning_rate_schedule_fn(self, step):
|
185 |
+
"""Returns the learning rate for the given step."""
|
186 |
+
|
187 |
+
# There are four components to the learning rate.
|
188 |
+
#
|
189 |
+
# The base_lrate is defined by the optimizer, and different optimizers have
|
190 |
+
# different relative rates, e.g. Adafactor requires a higher LR than Adam.
|
191 |
+
# By default, the base_lrate is 1.0 for Adafactor.
|
192 |
+
#
|
193 |
+
# The base_lrate is then multiplied by the learning rate decay schedule,
|
194 |
+
# which typically starts at a maximum value and decays over time.
|
195 |
+
# Each schedule can be individually configured, e.g. from 0.01 to 0.001.
|
196 |
+
# The max_scheduled_steps parameter controls the decay rate of the schedule.
|
197 |
+
#
|
198 |
+
# Finally, the LR is scaled by the learning_rate_multiplier, which provides
|
199 |
+
# an easy way to scale the LR for hyperparameter tuning in a way that is
|
200 |
+
# independent of the choice of schedule or optimizer. The default is 1.0.
|
201 |
+
#
|
202 |
+
# During the warmp period, the learning rate ramps up linearly from zero.
|
203 |
+
|
204 |
+
step = jnp.asarray(step, dtype=jnp.float32)
|
205 |
+
if self.max_scheduled_steps == 0:
|
206 |
+
max_steps = self.num_steps
|
207 |
+
else:
|
208 |
+
max_steps = self.max_scheduled_steps
|
209 |
+
|
210 |
+
base_lrate = float(self.optimizer_factory.learning_rate)
|
211 |
+
lr_multiplier = float(self.learning_rate_multiplier)
|
212 |
+
|
213 |
+
# Linear increase in learning rate up to warmup_steps.
|
214 |
+
warmup_steps = float(self.warmup_steps)
|
215 |
+
lr_warmup_ramp = jnp.minimum(step, warmup_steps) / warmup_steps
|
216 |
+
|
217 |
+
# Hold step at a constant value during the warmup period.
|
218 |
+
# Required for some schedules, like rsqrt_decay.
|
219 |
+
step = jnp.maximum(step, warmup_steps)
|
220 |
+
|
221 |
+
# Get the scheduled learning rate.
|
222 |
+
lrate = self.learning_rate_schedule(step, max_steps)
|
223 |
+
|
224 |
+
# Multiply lrate by the base, warmup and multiplier factors.
|
225 |
+
lrate = lrate * base_lrate * lr_warmup_ramp * lr_multiplier
|
226 |
+
return jnp.asarray(lrate, dtype=jnp.float32)
|
227 |
+
|
228 |
+
def _init_rngs(self, rngs: PRNGKeys, step: int) -> PRNGKeys:
|
229 |
+
# Get a new random number generator for each step
|
230 |
+
rngs = jax.random.fold_in(rngs, step)
|
231 |
+
rngs = jax.random.split(rngs, len(self.rng_key_names))
|
232 |
+
rngs = {key: rngs[i] for i, key in enumerate(self.rng_key_names)}
|
233 |
+
return rngs
|
234 |
+
|
235 |
+
def train_step(self, model: nn.Module, tstate: TrainState, x: Any,
|
236 |
+
rngs: PRNGKeys) -> Tuple[TrainState, Metrics]:
|
237 |
+
"""Perform a training step, pmapped over multiple devices.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
model: The model to use for the step function.
|
241 |
+
tstate: Values for state variables, and the optimizer.
|
242 |
+
x: A batch of inputs to train on.
|
243 |
+
rngs: PRNGKey (possibly replicated).
|
244 |
+
|
245 |
+
Returns:
|
246 |
+
Tuple of (new_tstate, metrics: dictionary of scalar values)
|
247 |
+
"""
|
248 |
+
|
249 |
+
mutable_keys = [k for (k, _) in tstate.state.items()]
|
250 |
+
step = tstate.optimizer.state.step
|
251 |
+
rngs = self._init_rngs(rngs, step)
|
252 |
+
|
253 |
+
# Refactor the model as a loss function from trainable params to loss, so
|
254 |
+
# that we can differentiate with jax and get {d}loss/{d}params.
|
255 |
+
# Inputs and non-trainable params are bound within the closure.
|
256 |
+
# model:: x, { state_params } -> (loss, metrics), { new_state_params }
|
257 |
+
# loss_fn:: params -> (loss, (metrics, new_state))
|
258 |
+
def loss_fn(params):
|
259 |
+
"""Loss function."""
|
260 |
+
(loss, mets), nstate = model.apply({"params": params, **tstate.state},
|
261 |
+
x,
|
262 |
+
rngs=rngs,
|
263 |
+
mutable=mutable_keys)
|
264 |
+
return loss, (mets, nstate)
|
265 |
+
|
266 |
+
# grad_fn:: params -> ((loss, (aux, nstate)), param_gradients)
|
267 |
+
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
|
268 |
+
|
269 |
+
# Run forward and backward pass.
|
270 |
+
(loss, (metrics, new_state)), param_grads = grad_fn(tstate.optimizer.target)
|
271 |
+
del loss # loss is only recorded if it is part of the metrics
|
272 |
+
if self.replicate_mode:
|
273 |
+
param_grads = jax.lax.pmean(param_grads, axis_name="batch")
|
274 |
+
lrate = self.learning_rate_schedule_fn(step)
|
275 |
+
new_optimizer = tstate.optimizer.apply_gradient(
|
276 |
+
param_grads, learning_rate=lrate)
|
277 |
+
|
278 |
+
# Metrics are summary values that will be logged.
|
279 |
+
if self.replicate_mode:
|
280 |
+
# Merge metrics (take mean/sum etc.) over replicas on-device.
|
281 |
+
summary_class = self.metrics_summary_factory
|
282 |
+
metrics = summary_class.merge_replicated_metrics(
|
283 |
+
metrics, model.metrics_summary_operations(aggregate_over="devices"))
|
284 |
+
|
285 |
+
metrics["learning_rate"] = lrate
|
286 |
+
return (TrainState(new_optimizer, new_state), metrics)
|
287 |
+
|
288 |
+
def other_step(self, model: nn.Module, tstate: TrainState, x: Any,
|
289 |
+
rngs: PRNGKeys) -> Tuple[TrainState, Metrics]:
|
290 |
+
"""Perform a test or generate step, pmapped over multiple devices.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
model: The model to use for the step function.
|
294 |
+
tstate: Values for state variables, and the optimizer.
|
295 |
+
x: A batch of inputs to train on.
|
296 |
+
rngs: PRNGKey (possibly replicated).
|
297 |
+
|
298 |
+
Returns:
|
299 |
+
Tuple of (new_tstate, metrics: dictionary of scalar values)
|
300 |
+
"""
|
301 |
+
|
302 |
+
mutable_keys = [k for (k, _) in tstate.state.items()]
|
303 |
+
step = tstate.optimizer.state.step
|
304 |
+
rngs = self._init_rngs(rngs, step)
|
305 |
+
|
306 |
+
params = tstate.optimizer.target
|
307 |
+
(loss, metrics), new_state = model.apply({"params": params, **tstate.state},
|
308 |
+
x,
|
309 |
+
rngs=rngs,
|
310 |
+
mutable=mutable_keys)
|
311 |
+
del loss # loss is only recorded if it is part of the metrics
|
312 |
+
|
313 |
+
# Metrics are summary values that will be logged.
|
314 |
+
if self.replicate_mode:
|
315 |
+
# Merge metrics (take mean/sum etc.) over replicas on-device.
|
316 |
+
summary_class = self.metrics_summary_factory
|
317 |
+
metrics = summary_class.merge_replicated_metrics(
|
318 |
+
metrics, model.metrics_summary_operations(aggregate_over="devices"))
|
319 |
+
|
320 |
+
return (TrainState(tstate.optimizer, new_state), metrics)
|
321 |
+
|
322 |
+
def initialize_model(self) -> Tuple[TrainState, int, nn.Module, PRNGKeys]:
|
323 |
+
"""Initialize the model and/or load it from a checkpoint.
|
324 |
+
|
325 |
+
Returns:
|
326 |
+
(tstate: TrainState, -- The parameters and state for the the model.
|
327 |
+
start_step: int, -- The step number, when restoring from checkpoint.
|
328 |
+
imodel: nn.Module, -- A model object (created with mode "init").
|
329 |
+
rngs: PRNGkeys) -- Initial random numbers.
|
330 |
+
"""
|
331 |
+
|
332 |
+
# Set up random number generators.
|
333 |
+
# ---------------------------------
|
334 |
+
logging.info("==== Training loop: initializing model ====")
|
335 |
+
logging.info("Process %d of %d", jax.process_index(), jax.process_count())
|
336 |
+
logging.info("Local device count = %d", jax.local_device_count())
|
337 |
+
logging.info("Number of replicas = %d",
|
338 |
+
jax.process_count() * jax.local_device_count())
|
339 |
+
logging.info("Using random number seed %d", self.random_seed)
|
340 |
+
|
341 |
+
prng = jax.random.PRNGKey(self.random_seed)
|
342 |
+
prng, init_rng = jax.random.split(prng)
|
343 |
+
|
344 |
+
# Grab rngs, which provide different random numbers for each replica.
|
345 |
+
if self.replicate_mode:
|
346 |
+
prngs = jax.random.split(prng, jax.local_device_count())
|
347 |
+
else:
|
348 |
+
prngs = prng
|
349 |
+
del prng
|
350 |
+
|
351 |
+
# Create a dictionary of prng keys for initialization.
|
352 |
+
rng_key_names_init = list(self.rng_key_names) + ["params"]
|
353 |
+
init_rngs = jax.random.split(init_rng, len(rng_key_names_init))
|
354 |
+
init_rngs = {key: init_rngs[i] for i, key in enumerate(rng_key_names_init)}
|
355 |
+
del init_rng
|
356 |
+
|
357 |
+
# Build Model
|
358 |
+
# -------------------------------------------------------------------------
|
359 |
+
logging.info("Initializing the model.")
|
360 |
+
|
361 |
+
# Create a model, which will be used to initialize trainable parameters.
|
362 |
+
imodel = self.model_definition(mode="init")
|
363 |
+
|
364 |
+
# The init function will lazily initialize the model, given a fake input.
|
365 |
+
# It returns initialized variables, without doing a fwd pass.
|
366 |
+
model_init_fn = jax.jit(imodel.init)
|
367 |
+
variables = model_init_fn(init_rngs, imodel.get_fake_input())
|
368 |
+
|
369 |
+
# Split variables into trainable and non-trainable sets.
|
370 |
+
mstate, params = variables.pop("params")
|
371 |
+
del variables # Delete to avoid wasting resources.
|
372 |
+
|
373 |
+
# Create an optimizer for params.
|
374 |
+
optimizer_def = self.optimizer_factory.create_optimizer_def()
|
375 |
+
optimizer = optimizer_def.create(params)
|
376 |
+
|
377 |
+
# tstate holds the full training state of the model.
|
378 |
+
tstate = TrainState(optimizer, mstate)
|
379 |
+
if self.print_variables:
|
380 |
+
logging.info("params = %s", tstate.optimizer.target)
|
381 |
+
logging.info("state = %s", tstate.state)
|
382 |
+
|
383 |
+
# Load a pre-trained model or restore it from checkpoint.
|
384 |
+
if self.workdir or self.load_dir:
|
385 |
+
restore_checkpoints = self.restore_checkpoints
|
386 |
+
else:
|
387 |
+
restore_checkpoints = False
|
388 |
+
|
389 |
+
start_step = 0
|
390 |
+
if restore_checkpoints:
|
391 |
+
tstate = self.restore_checkpoint(tstate)
|
392 |
+
start_step = int(tstate.optimizer.state.step)
|
393 |
+
|
394 |
+
# Log info on trainable parameters (before replicating them).
|
395 |
+
self._write_parameter_info(tstate)
|
396 |
+
# raise ValueError("That's all folks!")
|
397 |
+
|
398 |
+
# Replicate the training state across local devices.
|
399 |
+
if self.replicate_mode:
|
400 |
+
tstate = jax_utils.replicate(tstate)
|
401 |
+
|
402 |
+
return (tstate, start_step, imodel, prngs)
|
403 |
+
|
404 |
+
def restore_checkpoint(self, train_state: TrainState) -> TrainState:
|
405 |
+
"""Load a pre-trained model or restore it from a checkpoint."""
|
406 |
+
|
407 |
+
# Figure out if we have an existing checkpoint.
|
408 |
+
if not self.workdir:
|
409 |
+
logging.info("No working directory specified.")
|
410 |
+
existing_checkpoint = False
|
411 |
+
elif not gfile.exists(self.workdir):
|
412 |
+
logging.info("No existing checkpoint directory %s", self.workdir)
|
413 |
+
existing_checkpoint = False
|
414 |
+
elif not gfile.isdir(self.workdir):
|
415 |
+
raise ValueError(f"workdir {self.workdir} must be a directory.")
|
416 |
+
else:
|
417 |
+
ckpath = checkpoints.latest_checkpoint(self.workdir, "checkpoint_")
|
418 |
+
if ckpath:
|
419 |
+
logging.info("Found existing checkpoint in %s", self.workdir)
|
420 |
+
existing_checkpoint = True
|
421 |
+
else:
|
422 |
+
logging.info("No existing checkpoint in %s", self.workdir)
|
423 |
+
existing_checkpoint = False
|
424 |
+
|
425 |
+
# If any checkpoints exist in workdir, then use those first.
|
426 |
+
# This will ensure that the task will restore properly if it's preempted.
|
427 |
+
if existing_checkpoint:
|
428 |
+
logging.info("Restoring model from last checkpoint %s:", self.workdir)
|
429 |
+
load_dir = self.workdir
|
430 |
+
elif self.load_dir:
|
431 |
+
logging.info("Loading pre-trained model from %s:", self.load_dir)
|
432 |
+
load_dir = self.load_dir
|
433 |
+
else:
|
434 |
+
logging.warning("Unable to load model.")
|
435 |
+
return train_state
|
436 |
+
loaded_train_state = checkpoints.restore_checkpoint(load_dir, train_state)
|
437 |
+
step = int(loaded_train_state.optimizer.state.step)
|
438 |
+
self.post_load_checkpoint_fn(load_dir, step)
|
439 |
+
|
440 |
+
if self.restore_state_variables:
|
441 |
+
# Restore complete state.
|
442 |
+
logging.info("Restoring all variables and state.")
|
443 |
+
train_state = loaded_train_state
|
444 |
+
del loaded_train_state
|
445 |
+
else:
|
446 |
+
# Restore trainable variables, but not other state.
|
447 |
+
logging.info("Only restoring trainable parameters.")
|
448 |
+
train_state = TrainState(loaded_train_state.optimizer, train_state.state)
|
449 |
+
del loaded_train_state
|
450 |
+
|
451 |
+
return train_state
|
452 |
+
|
453 |
+
def save_checkpoint(self, tstate: TrainState, step: int,
|
454 |
+
param_summary: Optional[MetricsSummary]):
|
455 |
+
"""Save a checkpoint with the model state.
|
456 |
+
|
457 |
+
Args:
|
458 |
+
tstate: The training state.
|
459 |
+
step: The current step number.
|
460 |
+
param_summary: Optional metrics summary to write parameter statistics.
|
461 |
+
"""
|
462 |
+
|
463 |
+
logging.info("Saving checkpoint in directory %s", self.workdir)
|
464 |
+
if self.replicate_mode:
|
465 |
+
save_state = jax_utils.unreplicate(tstate)
|
466 |
+
else:
|
467 |
+
save_state = tstate
|
468 |
+
checkpoints.save_checkpoint(self.workdir, save_state, step)
|
469 |
+
|
470 |
+
# While we're at it, record distributions of trainable parameters.
|
471 |
+
if param_summary is not None:
|
472 |
+
logging.info("Recording parameter distributions.")
|
473 |
+
params_dict = jax.device_get(
|
474 |
+
_flatten_dict_string_keys(save_state.optimizer.target))
|
475 |
+
param_distribs = self._compute_parameter_distributions(params_dict)
|
476 |
+
param_summary.add(param_distribs)
|
477 |
+
|
478 |
+
def create_training_task(self, mode: str, imodel: nn.Module, prngs: PRNGKeys,
|
479 |
+
writers: Dict[str, MetricWriter]) -> TrainingTask:
|
480 |
+
"""Create a new TrainingTask for the given mode.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
mode: The mode for the task, e.g. "train", "test", "generate".
|
484 |
+
imodel: The model object from initialize_model.
|
485 |
+
prngs: The PRNGKeys from initialize_model.
|
486 |
+
writers: A dictionary of summary writers.
|
487 |
+
|
488 |
+
Returns:
|
489 |
+
A TrainingTask object.
|
490 |
+
"""
|
491 |
+
|
492 |
+
logging.info("Training loop: creating task for mode %s", mode)
|
493 |
+
if self.use_separate_metric_directories:
|
494 |
+
prefix = ""
|
495 |
+
else:
|
496 |
+
prefix = mode
|
497 |
+
|
498 |
+
if mode == "train":
|
499 |
+
ds = self.get_training_dataset_iterator
|
500 |
+
elif mode == "test":
|
501 |
+
ds = self.get_test_dataset_iterator
|
502 |
+
else:
|
503 |
+
ds = None
|
504 |
+
|
505 |
+
# We summarize metrics over multiple training steps.
|
506 |
+
# These types control how the summary is computed.
|
507 |
+
metric_summary_ops = {
|
508 |
+
"step_time": "mean",
|
509 |
+
"learning_rate": "last",
|
510 |
+
**imodel.metrics_summary_operations(aggregate_over="steps")
|
511 |
+
}
|
512 |
+
summary = self.metrics_summary_factory(metric_summary_ops)
|
513 |
+
extra_summary = self.metrics_summary_factory({})
|
514 |
+
summary_writer = self._get_summary_writer(mode, writers)
|
515 |
+
|
516 |
+
return TrainingTask(
|
517 |
+
mode=mode,
|
518 |
+
dataset=ds,
|
519 |
+
step_function=self._compile_step_function(mode),
|
520 |
+
prng_keys=prngs,
|
521 |
+
summary=summary,
|
522 |
+
extra_summary=extra_summary,
|
523 |
+
summary_writer=summary_writer,
|
524 |
+
summary_prefix=prefix,
|
525 |
+
# --- options ---
|
526 |
+
replicate_mode=self.replicate_mode,
|
527 |
+
print_input_every_steps=self.print_input_every_steps,
|
528 |
+
pretty_print_input_function=self.pretty_print_input_function,
|
529 |
+
process_summaries_function=self.process_summaries_function,
|
530 |
+
extra_summaries_function=self.extra_summaries_fn)
|
531 |
+
|
532 |
+
def train(self):
|
533 |
+
"""Runs the training and evaluation loop."""
|
534 |
+
|
535 |
+
# The master process saves checkpoints and summaries to disk.
|
536 |
+
is_master_process = jax.process_index() == 0
|
537 |
+
if self.workdir:
|
538 |
+
save_checkpoints = self.save_checkpoints
|
539 |
+
else:
|
540 |
+
save_checkpoints = False
|
541 |
+
|
542 |
+
# --- Create and initialize the model. ---
|
543 |
+
(tstate, start_step, imodel, prngs) = self.initialize_model()
|
544 |
+
|
545 |
+
# Log experiment hyper-parameters.
|
546 |
+
writers = {}
|
547 |
+
train_writer = self._get_summary_writer("train", writers)
|
548 |
+
if start_step == 0:
|
549 |
+
self._write_config(train_writer)
|
550 |
+
|
551 |
+
# Additional summary objects.
|
552 |
+
param_summary = self.metrics_summary_factory({}) # Parameter statistics.
|
553 |
+
|
554 |
+
# --- Create task objects for test, train, and generate. ---
|
555 |
+
tasks = {}
|
556 |
+
train_task = self.create_training_task("train", imodel, prngs, writers)
|
557 |
+
tasks["train"] = train_task
|
558 |
+
|
559 |
+
if (self.get_test_dataset_iterator is not None and
|
560 |
+
self.test_every_steps != 0):
|
561 |
+
test_task = self.create_training_task("test", imodel, prngs, writers)
|
562 |
+
tasks["test"] = test_task
|
563 |
+
if self.generate_every_steps != 0:
|
564 |
+
gen_task = self.create_training_task("generate", imodel, prngs,
|
565 |
+
writers)
|
566 |
+
tasks["generate"] = gen_task
|
567 |
+
|
568 |
+
# Register any additional actions.
|
569 |
+
register_interstep_callbacks()
|
570 |
+
|
571 |
+
# Main Training Loop
|
572 |
+
# --------------------------------------------------------------------------
|
573 |
+
logging.info("==== Training loop: starting main loop ====")
|
574 |
+
with metric_writers.ensure_flushes(*writers.values()):
|
575 |
+
for step in range(start_step, self.num_steps):
|
576 |
+
# Log status every so often to monitor progress.
|
577 |
+
if should_run(step, self.status_every_steps):
|
578 |
+
logging.info("Step: %d", step)
|
579 |
+
|
580 |
+
# Train.
|
581 |
+
train_x = train_task.get_next_input()
|
582 |
+
(tstate, _) = train_task.run_step(tstate, train_x, step)
|
583 |
+
run_interstep_callbacks("train", step)
|
584 |
+
del train_x
|
585 |
+
|
586 |
+
# Test.
|
587 |
+
if should_run(step, self.test_every_steps):
|
588 |
+
if self.num_test_steps > 1:
|
589 |
+
logging.info("Test cycle: %d iterations.", self.num_test_steps)
|
590 |
+
for sub_step in range(0, self.num_test_steps):
|
591 |
+
test_x = test_task.get_next_input()
|
592 |
+
|
593 |
+
# TODO(delesley): This is an ugly hack to run generate steps.
|
594 |
+
# Run a generate step using test data.
|
595 |
+
# Generate is run just *before* the last test iteration.
|
596 |
+
if ((sub_step == self.num_test_steps - 1) and
|
597 |
+
should_run(step, self.generate_every_steps)):
|
598 |
+
logging.info("Generate cycle.")
|
599 |
+
(tstate, _) = gen_task.run_step(tstate, test_x, step)
|
600 |
+
run_interstep_callbacks("generate", step)
|
601 |
+
|
602 |
+
(tstate, _) = test_task.run_step(tstate, test_x, step,
|
603 |
+
sub_step=sub_step)
|
604 |
+
run_interstep_callbacks("test", step, sub_step)
|
605 |
+
del test_x
|
606 |
+
|
607 |
+
# --- Save checkpoints on the master host. ---
|
608 |
+
is_last_step = (step == self.num_steps - 1)
|
609 |
+
checkpoint_current_step = (
|
610 |
+
save_checkpoints and
|
611 |
+
(should_run(step, self.checkpoint_every_steps) or is_last_step))
|
612 |
+
if checkpoint_current_step:
|
613 |
+
if is_master_process:
|
614 |
+
self.save_checkpoint(tstate, step, param_summary)
|
615 |
+
self.post_save_checkpoint_fn(self.workdir, step)
|
616 |
+
|
617 |
+
# --- Flush summaries to disk. ---
|
618 |
+
if should_run(step, self.log_every_steps):
|
619 |
+
for tsk in tasks.values():
|
620 |
+
tsk.flush(step)
|
621 |
+
param_summary.write(train_writer, step, prefix="params")
|
622 |
+
|
623 |
+
logging.info("Training Finished.")
|
624 |
+
if self.replicate_mode:
|
625 |
+
tstate = jax_utils.unreplicate(tstate)
|
626 |
+
if self.print_variables:
|
627 |
+
logging.info("params = %s", tstate.optimizer.target)
|
628 |
+
logging.info("state = %s", tstate.state)
|
629 |
+
|
630 |
+
def _compile_step_function(self, mode: str) -> StepFunction:
|
631 |
+
"""Compile a step function (training or test)."""
|
632 |
+
|
633 |
+
# Create a model object, and a step function that is a closure over the
|
634 |
+
# object. Flax modules are supposed to be "stateless", in that all state
|
635 |
+
# is contained the TrainState object that is passed as an input parameter.
|
636 |
+
# However, creating the model object may involve allocating expensive
|
637 |
+
# data structures, or launching processes, and should only be done once.
|
638 |
+
model = self.model_definition(mode=mode)
|
639 |
+
if mode == "train":
|
640 |
+
step_fn = functools.partial(self.train_step, model)
|
641 |
+
else:
|
642 |
+
step_fn = functools.partial(self.other_step, model)
|
643 |
+
|
644 |
+
if self.replicate_mode:
|
645 |
+
assert not self.trace_debug_mode
|
646 |
+
logging.info("Compiling mode %s with pmap.", mode)
|
647 |
+
p_fn = jax.pmap(step_fn, donate_argnums=(0,), axis_name="batch")
|
648 |
+
elif self.trace_debug_mode:
|
649 |
+
logging.info("Compiling mode %s with trace_debug.", mode)
|
650 |
+
p_fn = step_fn
|
651 |
+
else:
|
652 |
+
logging.info("Compiling mode %s with jit.", mode)
|
653 |
+
p_fn = jax.jit(step_fn, donate_argnums=(0,))
|
654 |
+
return p_fn
|
655 |
+
|
656 |
+
def _get_summary_writer(self, mode: str,
|
657 |
+
writers: Dict[str, MetricWriter]) -> MetricWriter:
|
658 |
+
"""Create a summary writer for the given mode.
|
659 |
+
|
660 |
+
Args:
|
661 |
+
mode: the mode for the summaries, e.g. "test", "train"
|
662 |
+
writers: a dictionary which caches previously-created writers.
|
663 |
+
|
664 |
+
Returns:
|
665 |
+
A writer for the given mode.
|
666 |
+
"""
|
667 |
+
|
668 |
+
if self.use_separate_metric_directories:
|
669 |
+
# Create a separate writer & directory for each mode.
|
670 |
+
w_mode = mode
|
671 |
+
summary_dir = os.path.join(self.workdir, mode)
|
672 |
+
else:
|
673 |
+
# Create a single default writer for all modes.
|
674 |
+
w_mode = "train"
|
675 |
+
summary_dir = self.workdir
|
676 |
+
|
677 |
+
if w_mode in writers:
|
678 |
+
# Return previously created and cached writer.
|
679 |
+
logging.info("Returning cached summary writer (%s) for mode %s",
|
680 |
+
w_mode, mode)
|
681 |
+
return writers[w_mode]
|
682 |
+
|
683 |
+
if not self.workdir:
|
684 |
+
# No working directory, so log only.
|
685 |
+
logging.info("Creating logging writer (%s) for mode %s", w_mode, mode)
|
686 |
+
writer = metric_writers.LoggingWriter()
|
687 |
+
else:
|
688 |
+
# Create a new writer for workdir.
|
689 |
+
# Only the master will actually write summaries to workdir.
|
690 |
+
logging.info("Creating summary writer (%s) for mode %s in directory %s",
|
691 |
+
w_mode, mode, summary_dir)
|
692 |
+
is_master = jax.process_index() == 0
|
693 |
+
gfile.makedirs(summary_dir)
|
694 |
+
writer = metric_writers.create_default_writer(summary_dir,
|
695 |
+
just_logging=not is_master)
|
696 |
+
writers[w_mode] = writer
|
697 |
+
return writer
|
698 |
+
|
699 |
+
def _write_config(self, writer):
|
700 |
+
"""Write the configuration file to the working directory."""
|
701 |
+
|
702 |
+
is_master = jax.process_index() == 0
|
703 |
+
config_str = gin.operative_config_str()
|
704 |
+
logging.info("Gin config: \n%s", config_str)
|
705 |
+
|
706 |
+
# Write configuration to workdir.
|
707 |
+
if is_master and self.workdir:
|
708 |
+
config_file_name = os.path.join(self.workdir, "config.gin")
|
709 |
+
with gfile.GFile(config_file_name, "w") as f:
|
710 |
+
f.write(config_str)
|
711 |
+
|
712 |
+
# Write config string text to tensorboard.
|
713 |
+
writer.write_texts(0, {"config": gin.markdown(config_str)})
|
714 |
+
|
715 |
+
def _write_parameter_info(self, tstate: TrainState):
|
716 |
+
"""Write information on state and trainable parameters to the log."""
|
717 |
+
|
718 |
+
# Write information on parameters to log file.
|
719 |
+
params_dict = _flatten_dict_string_keys(tstate.optimizer.target)
|
720 |
+
total_nparams = 0
|
721 |
+
for (k, v) in params_dict.items():
|
722 |
+
nparams = np.prod(v.shape)
|
723 |
+
total_nparams += nparams
|
724 |
+
logging.info("parameter: %s, shape %s, size %d", k, v.shape, nparams)
|
725 |
+
logging.info("Total parameters: %d", total_nparams)
|
726 |
+
|
727 |
+
# Write information on state variables to log file.
|
728 |
+
state_dict = _flatten_dict_string_keys(tstate.state)
|
729 |
+
state_size = 0
|
730 |
+
total_state = 0
|
731 |
+
for (k, v) in state_dict.items():
|
732 |
+
if hasattr(v, "shape"):
|
733 |
+
state_size = np.prod(v.shape)
|
734 |
+
total_state += state_size
|
735 |
+
logging.info("state: %s, shape %s, size %d", k, v.shape, state_size)
|
736 |
+
else:
|
737 |
+
# Some other stuff may be stored in the state.
|
738 |
+
logging.info("state: %s [unknown]", k)
|
739 |
+
logging.info("Total state size: %d", total_state)
|
740 |
+
|
741 |
+
def _compute_parameter_distributions(self, params_dict):
|
742 |
+
"""Compute info on distributions of parameters."""
|
743 |
+
|
744 |
+
scalar_params_dict = {}
|
745 |
+
for (k, v) in params_dict.items():
|
746 |
+
# Convert from bfloat16, which crashes when serializing a NaN.
|
747 |
+
v = np.asarray(v, dtype=jnp.float32)
|
748 |
+
scalar_params_dict[k + "_mean"] = np.mean(v)
|
749 |
+
scalar_params_dict[k + "_stddev"] = np.std(v)
|
750 |
+
# scalar_params_dict[k + "_min"] = np.min(v)
|
751 |
+
# scalar_params_dict[k + "_max"] = np.max(v)
|
752 |
+
return scalar_params_dict
|
753 |
+
|
754 |
+
|
755 |
+
def _flatten_dict_string_keys(params):
|
756 |
+
"""Flattens a nested dictionary to have string keys and '/' separators."""
|
757 |
+
return {"/".join(k): v for k, v in flatten_dict(unfreeze(params)).items()}
|
aglib/meliad/training_task.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Google.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""TrainingTask encapsulates the state associated with model step."""
|
16 |
+
|
17 |
+
import time
|
18 |
+
from typing import (Any, Callable, Dict, Iterator, Mapping, Optional, Tuple)
|
19 |
+
|
20 |
+
from absl import logging
|
21 |
+
from clu import metric_writers
|
22 |
+
from flax import optim
|
23 |
+
from flax import struct
|
24 |
+
import jax
|
25 |
+
import metrics_summary
|
26 |
+
import numpy as np
|
27 |
+
|
28 |
+
|
29 |
+
@struct.dataclass
|
30 |
+
class TrainState:
|
31 |
+
optimizer: optim.Optimizer # Trainable parameters.
|
32 |
+
state: Any # Other state, e.g. XL cache or memory.
|
33 |
+
|
34 |
+
|
35 |
+
PRNGKeys = Any
|
36 |
+
Metrics = Dict[str, Any]
|
37 |
+
MetricsSummary = metrics_summary.MetricsSummary
|
38 |
+
|
39 |
+
Dataset = Callable[[], Iterator[Any]]
|
40 |
+
StepFunction = Callable[[TrainState, Any, Any], Tuple[TrainState, Metrics]]
|
41 |
+
PrettyPrintInputFunction = Optional[Callable[[Any], str]]
|
42 |
+
ProcessSummariesFunction = Optional[Callable[[Any, str], Any]]
|
43 |
+
ExtraSummariesFunction = Optional[Callable[[str, int], Mapping[str, Any]]]
|
44 |
+
|
45 |
+
|
46 |
+
def should_run(step: int, every_steps: int) -> bool:
|
47 |
+
"""Returns true if a periodic action should be run."""
|
48 |
+
return (step > 0) and (every_steps > 0) and (step % every_steps == 0)
|
49 |
+
|
50 |
+
|
51 |
+
class TrainingTask:
|
52 |
+
"""A TrainingTask encapsulates the state associated with a training task.
|
53 |
+
|
54 |
+
Examples of tasks include training steps, test or validation runs,
|
55 |
+
or inference (generation). State includes the input pipeline, and
|
56 |
+
summary information that is averaged over multiple steps.
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
*, # Pass arguments by keyword only.
|
62 |
+
mode: str,
|
63 |
+
dataset: Dataset,
|
64 |
+
step_function: StepFunction,
|
65 |
+
prng_keys: PRNGKeys,
|
66 |
+
summary: MetricsSummary,
|
67 |
+
extra_summary: MetricsSummary,
|
68 |
+
summary_writer: metric_writers.MetricWriter,
|
69 |
+
summary_prefix: str = "",
|
70 |
+
# --- Options from TrainingLoop ---
|
71 |
+
replicate_mode: bool = True,
|
72 |
+
print_input_every_steps: int = 0,
|
73 |
+
pretty_print_input_function: PrettyPrintInputFunction = None,
|
74 |
+
process_summaries_function: ProcessSummariesFunction = None,
|
75 |
+
extra_summaries_function: Optional[ExtraSummariesFunction] = None):
|
76 |
+
# Local state.
|
77 |
+
self.mode = mode
|
78 |
+
self.dataset = dataset
|
79 |
+
self.step_function = step_function
|
80 |
+
self.prng_keys = prng_keys
|
81 |
+
self.summary = summary
|
82 |
+
self.extra_summary = extra_summary
|
83 |
+
self.summary_writer = summary_writer
|
84 |
+
self.summary_prefix = summary_prefix
|
85 |
+
|
86 |
+
# Options carried over from TrainingLoop.
|
87 |
+
self.replicate_mode = replicate_mode
|
88 |
+
self.print_input_every_steps = print_input_every_steps
|
89 |
+
self.pretty_print_input_fn = pretty_print_input_function
|
90 |
+
self.process_summaries_fn = process_summaries_function
|
91 |
+
self.extra_summaries_fn = extra_summaries_function
|
92 |
+
|
93 |
+
# Local state.
|
94 |
+
if self.dataset is not None:
|
95 |
+
self.ds_iterator = self.dataset()
|
96 |
+
self.epoch = 0
|
97 |
+
|
98 |
+
def _get_metrics(self, device_metrics: Metrics) -> Metrics:
|
99 |
+
"""Read a dictionary of metrics from device."""
|
100 |
+
if self.replicate_mode:
|
101 |
+
# x[0] gets the metric from device 0 -- the first replica.
|
102 |
+
# We assume that merge_replicated_metrics has already combined the
|
103 |
+
# metrics from multiple devices.
|
104 |
+
device_metrics = jax.tree_map(lambda x: x[0], device_metrics)
|
105 |
+
metrics_np = jax.device_get(device_metrics) # Get numpy arrays.
|
106 |
+
return metrics_np
|
107 |
+
|
108 |
+
def get_next_input(self) -> Any:
|
109 |
+
"""Grab the next input from the data pipeline."""
|
110 |
+
if self.dataset is None:
|
111 |
+
logging.warning("No dataset for mode %s", self.mode)
|
112 |
+
return None
|
113 |
+
|
114 |
+
try:
|
115 |
+
x = next(self.ds_iterator)
|
116 |
+
except StopIteration:
|
117 |
+
logging.info("End of epoch %d for mode %s.", self.epoch, self.mode)
|
118 |
+
self.ds_iterator = self.dataset()
|
119 |
+
x = next(self.ds_iterator)
|
120 |
+
self.epoch += 1
|
121 |
+
return x
|
122 |
+
|
123 |
+
def run_step(self, tstate: TrainState, x: Any,
|
124 |
+
step: int, sub_step: int = 0) -> Tuple[TrainState, Metrics]:
|
125 |
+
"""Run the model for a single step.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
tstate: The current model state.
|
129 |
+
x: The input for the model -- from get_next_input.
|
130 |
+
step: The training step number.
|
131 |
+
sub_step: For tasks that run multiple iterations within a step.
|
132 |
+
E.g. A test cycle will call run_step multiple times to cover the test
|
133 |
+
set. The step counter will not increment, but sub_step will.
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
An updated model state.
|
137 |
+
"""
|
138 |
+
|
139 |
+
start_time = time.perf_counter()
|
140 |
+
|
141 |
+
# Split a batch of inputs among local replicas.
|
142 |
+
if self.replicate_mode:
|
143 |
+
x = split_batch_dimension(x, jax.local_device_count())
|
144 |
+
|
145 |
+
# Pretty-print the input to the summary and log file every so often.
|
146 |
+
if (sub_step == 0 and self.pretty_print_input_fn is not None and
|
147 |
+
should_run(step, self.print_input_every_steps)):
|
148 |
+
x_first = jax.tree_map(lambda x: x[0], x) if self.replicate_mode else x
|
149 |
+
x_strs = self.pretty_print_input_fn(x_first)
|
150 |
+
logging.info("[%d] Input (%s) = %s", step, self.mode, x_strs)
|
151 |
+
self.summary.add_text({"input": x_strs})
|
152 |
+
|
153 |
+
# Run the step function on the input.
|
154 |
+
with jax.profiler.StepTraceAnnotation(self.mode, step_num=step):
|
155 |
+
(tstate, metrics) = self.step_function(tstate, x, self.prng_keys)
|
156 |
+
|
157 |
+
# Read metrics from device.
|
158 |
+
metrics_np = self._get_metrics(metrics)
|
159 |
+
end_time = time.perf_counter()
|
160 |
+
metrics_np["step_time"] = end_time - start_time
|
161 |
+
if "epoch" not in metrics_np.keys():
|
162 |
+
metrics_np["epoch"] = self.epoch
|
163 |
+
|
164 |
+
# Add metrics to the current summary.
|
165 |
+
self.summary.add(metrics_np)
|
166 |
+
return (tstate, metrics_np)
|
167 |
+
|
168 |
+
def flush(self, step: int):
|
169 |
+
"""Flush accumulated metric summaries to disk."""
|
170 |
+
|
171 |
+
if self.summary_writer is None:
|
172 |
+
self.summary.clear() # Clear summary if we can't write it.
|
173 |
+
return
|
174 |
+
|
175 |
+
if self.summary.empty():
|
176 |
+
return
|
177 |
+
|
178 |
+
# Do post-processing of the summaries.
|
179 |
+
if self.process_summaries_fn is not None:
|
180 |
+
self.summary = self.process_summaries_fn(self.summary, self.mode) # pylint: disable=not-callable
|
181 |
+
|
182 |
+
# Write and clear summary data.
|
183 |
+
logging.info("Writing summaries for mode %s.", self.mode)
|
184 |
+
self.summary.write(self.summary_writer, step, prefix=self.summary_prefix)
|
185 |
+
|
186 |
+
# Add extra summaries that are not computed by the step function.
|
187 |
+
if self.extra_summaries_fn is not None:
|
188 |
+
self.extra_summary.add(self.extra_summaries_fn(self.mode, step))
|
189 |
+
self.extra_summary.write(self.summary_writer, step, prefix="")
|
190 |
+
|
191 |
+
|
192 |
+
def split_batch_dimension(inputs: Any, num_replicas: int) -> Any:
|
193 |
+
"""Splits the leading batch dimension.
|
194 |
+
|
195 |
+
Given inputs of shape [num_replicas * batch_size, ...], it will reshape
|
196 |
+
them to [num_replicas, batch_size, ...]. This operation is intended to be
|
197 |
+
used right before calling pmap, which will eliminate the num_replicas
|
198 |
+
dimension.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
inputs: Tuple of inputs to split.
|
202 |
+
num_replicas: Number of replicas.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
inputs with extra batch dimension.
|
206 |
+
"""
|
207 |
+
|
208 |
+
def split_batch_dim(x):
|
209 |
+
assert x.ndim > 0
|
210 |
+
if (x.shape[0] % num_replicas) != 0:
|
211 |
+
raise ValueError(f"Can't split {x.shape} into {num_replicas} replicas.")
|
212 |
+
batch_size = x.shape[0] // num_replicas
|
213 |
+
split_shape = [num_replicas, batch_size] + list(x.shape[1:])
|
214 |
+
return np.reshape(x, split_shape)
|
215 |
+
|
216 |
+
return jax.tree_map(split_batch_dim, inputs)
|