moulinette / Corriger.py
HuguesdeF's picture
Update Corriger.py
11c4504
raw
history blame
6.96 kB
import streamlit as st
import os
import streamlit_authenticator as stauth
from code.functions import pipeline_svg
from PIL import Image
import cv2
import numpy as np
from io import BytesIO
import copy
logo = Image.open("seguinmoreau.png")
st.set_page_config(
page_title="Moulinette Logos",
page_icon=logo,
layout="wide",
initial_sidebar_state="expanded"
)
inch_value = 2.54
logo = Image.open('seguinmoreau.png')
st.image(logo, width=200)
st.markdown(
"""
# Boîte à Outils de correction de logos :wrench:
Bienvenue dans la boîte à outils de correction de logos de Seguin Moreau.
### :hammer: Les outils
Dans cette boîte à outils, vous trouverez:
* Un outil de Correction automatique de logo (enlever les petits défauts, lissage, vectorisation, grossissement des traits trop fins).
### :bulb: Mode d'emploi
* Cliquer sur 'Browse files'
* Sélectionner un logo
* La correction est automatique. Si la correction ne vous convient pas, il est possible de régler les paramètres en cliquant sur 'Paramétrage' à droite de l'image.
* Les deux paramètres permettent de corriger les défauts liés à la présence de gris sur le logo ou la 'pixélisation' du logo trop importante.
"""
)
uploaded_files = st.file_uploader("Choisir un logo", accept_multiple_files=True)
image_width = 500
size_value = st.slider("Largeur de trait minimum", min_value=1, max_value=21, value=7, step=2)
size_value = (size_value - 1) // 2
# kernel_type_str = st.selectbox("Kernel type", ["Ellipse", "Rectangle", "Cross"])
kernel_type_str = "Ellipse"
dict_kernel_type = {"Ellipse": cv2.MORPH_ELLIPSE, "Rectangle": cv2.MORPH_RECT, "Cross": cv2.MORPH_CROSS}
kernel_type = dict_kernel_type[kernel_type_str]
for uploaded_file in uploaded_files:
col1, col2, col3 = st.columns([1, 1, 1])
col3.markdown("---")
image = Image.open(uploaded_file).convert('L')
image_input = np.array(image)
image = copy.deepcopy(image_input)
col1.image(image_input / 255.0, caption="Image d'entrée", use_column_width='auto')
with col3:
with st.expander(":gear: Paramétrage"):
st.write("Si l'image contient du gris, faire varier le seuil ci-dessous:")
threshold = st.slider("Seuil pour convertir l'image en noir&blanc.", min_value=0, max_value=255,
value=0,
step=1, key=f"{uploaded_file}_slider_threshold")
st.write("Si l'image est pixelisée, ou contient trop de détails, "
"augmenter la valeur ci-dessous:")
blur_value = st.slider("Seuil pour lisser l'image", min_value=1, max_value=11, value=1, step=2,
key=f"{uploaded_file}_slider_gaussian_sigma")
st.write("Si l'image contient des traits très fin (de l'odre du pixel),"
" augmenter le seuil ci-dessous, de 1 par 1:")
dilate_lines_value = st.slider("Dilatation de l'image d'origine: (en pixels)", min_value=0, max_value=5,
value=0, step=1, key=f"{uploaded_file}_slider_dilation_image")
st.write("Taille d'exportation d'image:")
dpi_value = st.number_input("Valeur dpi:", key=f"{uploaded_file}_number_dpi_value", value=200)
st.write("---")
st.write("Spécifier la taille maximum d'un côté, en cm:")
side_width_value = st.number_input("Taille max de côté cible (cm):",
key=f"{uploaded_file}_number_target_value", value=20.0)
new_largest_side_value = int(side_width_value / inch_value * dpi_value)
h, w, *_ = image.shape
# Resize image
ratio = w / h
if ratio > 1:
width = new_largest_side_value
height = int(width / ratio)
else:
height = new_largest_side_value
width = int(ratio * height)
st.write("---")
st.write("Ou, spécifier la largeur OU la hauteur cible, en cm:")
target_width_value = st.number_input("Largeur cible (cm):", key=f"{uploaded_file}_number_width_value",
value=0.0)
target_height_value = st.number_input("Hauteur cible (cm):", key=f"{uploaded_file}_number_height_value",
value=0.0)
if target_width_value > 0 and target_height_value == 0:
width = int(target_width_value / inch_value * dpi_value)
height = int(width / ratio)
elif target_height_value > 0 and target_width_value == 0:
height = int(target_height_value / inch_value * dpi_value)
width = int(height * ratio)
elif target_height_value > 0 and target_width_value > 0:
st.warning("Vous ne pouvez pas modifier la largeur et la hauteur simultanément.")
st.info(f"Le logo sera redimensionné de :")
st.info(f"hauteur={h} pixels et largeur={w} pixels vers "
f"hauteur={height} pixels et largeur={width} pixels.")
if threshold > 0:
image = (image > threshold) * 255
image = image.astype('uint8')
if blur_value > 0:
image = cv2.GaussianBlur(image, (blur_value, blur_value), blur_value - 1)
# Process image cv32f ==> cv32f
img_final = pipeline_svg(image, size_value=size_value, level=1, threshold=threshold, kernel_type=kernel_type,
dilate_lines_value=dilate_lines_value)
col2.image(img_final, caption="Image corrigée", use_column_width='auto')
# Check for grayscale
tolerance = 10
ratio_of_gray_pixels = int(np.sum((tolerance < image) * (image < 255 - tolerance)) / np.size(image) * 100)
if ratio_of_gray_pixels > 1:
col3.warning(f":warning: Le nombre de pixels gris est élevé: {ratio_of_gray_pixels} % > 1%")
# Check reconstruction fidelity
distance = np.mean((np.array(image) - img_final) ** 2)
if distance > 10:
col3.warning(
f":warning: Le logo est peut-être trop dégradé (MSE={distance:.2f} > 10).\nVérifier visuellement.")
dim = (width, height)
# resize image
resized_img_final = cv2.resize(img_final, dim, interpolation=cv2.INTER_AREA)
resized_image_input = cv2.resize(image_input, dim, interpolation=cv2.INTER_AREA)
buf = BytesIO()
# img_stacked = np.hstack((resized_image_input, resized_img_final))
img_final = Image.fromarray(resized_img_final).convert("L")
img_final.save(buf, format="PNG", dpi=(dpi_value, dpi_value))
byte_im = buf.getvalue()
btn = col3.download_button(
label=":inbox_tray: Télécharger l'image",
data=byte_im,
file_name=f"corrected_{uploaded_file.name}",
mime="image/png"
)