File size: 4,784 Bytes
12b7f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
from scipy.spatial.transform import Rotation as R

import torch

def dot(x, y):
    if isinstance(x, np.ndarray):
        return np.sum(x * y, -1, keepdims=True)
    else:
        return torch.sum(x * y, -1, keepdim=True)


def length(x, eps=1e-20):
    if isinstance(x, np.ndarray):
        return np.sqrt(np.maximum(np.sum(x * x, axis=-1, keepdims=True), eps))
    else:
        return torch.sqrt(torch.clamp(dot(x, x), min=eps))


def safe_normalize(x, eps=1e-20):
    return x / length(x, eps)


def look_at(campos, target, opengl=True):
    # campos: [N, 3], camera/eye position
    # target: [N, 3], object to look at
    # return: [N, 3, 3], rotation matrix
    if not opengl:
        # camera forward aligns with -z
        forward_vector = safe_normalize(target - campos)
        up_vector = np.array([0, 1, 0], dtype=np.float32)
        right_vector = safe_normalize(np.cross(forward_vector, up_vector))
        up_vector = safe_normalize(np.cross(right_vector, forward_vector))
    else:
        # camera forward aligns with +z
        forward_vector = safe_normalize(campos - target)
        up_vector = np.array([0, 1, 0], dtype=np.float32)
        right_vector = safe_normalize(np.cross(up_vector, forward_vector))
        up_vector = safe_normalize(np.cross(forward_vector, right_vector))
    R = np.stack([right_vector, up_vector, forward_vector], axis=1)
    return R


# elevation & azimuth to pose (cam2world) matrix
def orbit_camera(elevation, azimuth, radius=1, is_degree=True, target=None, opengl=True):
    # radius: scalar
    # elevation: scalar, in (-90, 90), from +y to -y is (-90, 90)
    # azimuth: scalar, in (-180, 180), from +z to +x is (0, 90)
    # return: [4, 4], camera pose matrix
    if is_degree:
        elevation = np.deg2rad(elevation)
        azimuth = np.deg2rad(azimuth)
    x = radius * np.cos(elevation) * np.sin(azimuth)
    y = - radius * np.sin(elevation)
    z = radius * np.cos(elevation) * np.cos(azimuth)
    if target is None:
        target = np.zeros([3], dtype=np.float32)
    campos = np.array([x, y, z]) + target  # [3]
    T = np.eye(4, dtype=np.float32)
    T[:3, :3] = look_at(campos, target, opengl)
    T[:3, 3] = campos
    return T


class OrbitCamera:
    def __init__(self, W, H, r=2, fovy=60, near=0.01, far=100):
        self.W = W
        self.H = H
        self.radius = r  # camera distance from center
        self.fovy = np.deg2rad(fovy)  # deg 2 rad
        self.near = near
        self.far = far
        self.center = np.array([0, 0, 0], dtype=np.float32)  # look at this point
        self.rot = R.from_matrix(np.eye(3))
        self.up = np.array([0, 1, 0], dtype=np.float32)  # need to be normalized!

    @property
    def fovx(self):
        return 2 * np.arctan(np.tan(self.fovy / 2) * self.W / self.H)

    @property
    def campos(self):
        return self.pose[:3, 3]

    # pose (c2w)
    @property
    def pose(self):
        # first move camera to radius
        res = np.eye(4, dtype=np.float32)
        res[2, 3] = self.radius  # opengl convention...
        # rotate
        rot = np.eye(4, dtype=np.float32)
        rot[:3, :3] = self.rot.as_matrix()
        res = rot @ res
        # translate
        res[:3, 3] -= self.center
        return res

    # view (w2c)
    @property
    def view(self):
        return np.linalg.inv(self.pose)

    # projection (perspective)
    @property
    def perspective(self):
        y = np.tan(self.fovy / 2)
        aspect = self.W / self.H
        return np.array(
            [
                [1 / (y * aspect), 0, 0, 0],
                [0, -1 / y, 0, 0],
                [
                    0,
                    0,
                    -(self.far + self.near) / (self.far - self.near),
                    -(2 * self.far * self.near) / (self.far - self.near),
                ],
                [0, 0, -1, 0],
            ],
            dtype=np.float32,
        )

    # intrinsics
    @property
    def intrinsics(self):
        focal = self.H / (2 * np.tan(self.fovy / 2))
        return np.array([focal, focal, self.W // 2, self.H // 2], dtype=np.float32)

    @property
    def mvp(self):
        return self.perspective @ np.linalg.inv(self.pose)  # [4, 4]

    def orbit(self, dx, dy):
        # rotate along camera up/side axis!
        side = self.rot.as_matrix()[:3, 0]
        rotvec_x = self.up * np.radians(-0.05 * dx)
        rotvec_y = side * np.radians(-0.05 * dy)
        self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot

    def scale(self, delta):
        self.radius *= 1.1 ** (-delta)

    def pan(self, dx, dy, dz=0):
        # pan in camera coordinate system (careful on the sensitivity!)
        self.center += 0.0005 * self.rot.as_matrix()[:3, :3] @ np.array([-dx, -dy, dz])