File size: 5,875 Bytes
61261dd d12c61c 61261dd 81ced9c 61261dd 81ced9c 61261dd d08d32b 61261dd d08d32b 61261dd d12c61c 61261dd bfb0da9 61261dd bfb0da9 61261dd d12c61c 61261dd d08d32b 61261dd d08d32b 61261dd d08d32b 61261dd d08d32b 61261dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
import pandas as pd
import random
from datasets import load_dataset, Dataset, DatasetDict
from huggingface_hub import HfApi, login
import os
from datetime import datetime
hf_api = HfApi()
HF_TOKEN = os.getenv('HF_TOKEN')
login(token=HF_TOKEN)
dataset_1 = load_dataset("HumanLLMs/LlamaPair")["train"]
dataset_2 = load_dataset("HumanLLMs/QwenPair")["train"]
dataset_3 = load_dataset("HumanLLMs/MistralPair")["train"]
df_log = pd.DataFrame(columns=["instruction", "selected_model", "pair", "submission_time"])
def remove_emojis(text):
return text.encode('ascii', 'ignore').decode('ascii')
def get_random_row():
selected_dataset = random.choice([dataset_1, dataset_2, dataset_3])
pair_name = ("LlamaPair" if selected_dataset == dataset_1
else "QwenPair" if selected_dataset == dataset_2
else "MistralPair")
row = selected_dataset[random.randint(0, len(selected_dataset) - 1)]
instruction = row["instruction"]
response_human = row["response_human_like_model"]
response_official = row["response_offical_instruct_model"]
responses = [("Human-like Model", response_human),
("Official Model", response_official)]
random.shuffle(responses)
return (instruction, remove_emojis(responses[0][1]), remove_emojis(responses[1][1]),
responses[0][0], responses[1][0], pair_name)
def format_response_1_html(response):
return f'''
<div style="border: 1px solid white; background-color: black;
padding: 10px; margin: 5px;">
<strong style="color: white;">Answer 1:</strong>
<div style="color: white;">{response}</div>
</div>
'''
def format_response_2_html(response):
return f'''
<div style="border: 1px solid white; background-color: black;
padding: 10px; margin: 5px;">
<strong style="color: white;">Answer 2:</strong>
<div style="color: white;">{response}</div>
</div>
'''
def submit_choice(selected_response, instruction, label_1, label_2, pair_name):
try:
df_log = pd.DataFrame(load_dataset("HumanLLMs/log")["train"])
except:
df_log = pd.DataFrame(columns=["instruction", "selected_model",
"pair", "submission_time"])
selected_model = label_1 if selected_response == "Answer 1" else label_2
submission_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
new_instruction, new_response_1, new_response_2, new_label_1, new_label_2, new_pair_name = get_random_row()
new_entry = pd.DataFrame({
"instruction": [new_instruction],
"selected_model": [selected_model],
"pair": [pair_name],
"submission_time": [submission_time]
})
df_log = pd.concat([df_log, new_entry], ignore_index=True)
df_log.to_csv("annotations_log.csv", index=False)
log = Dataset.from_pandas(df_log)
log.push_to_hub("HumanLLMs/log")
return (
f"### Question:\n{new_instruction}",
format_response_1_html(new_response_1),
format_response_2_html(new_response_2),
new_label_1,
new_label_2,
new_pair_name,
"Your choice has been recorded. A new question is loaded!"
)
def create_interface():
instruction, response_1, response_2, label_1, label_2, pair_name = get_random_row()
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# Human-Likeness Voting System")
gr.Markdown("![logo](logo.png)")
gr.Markdown("This interface has been created to compare the performance of the human-like LLMs developed by our team with the models on which they were trained. The results of this study will be presented in a paper. Please ensure that your responses are fair and accurate when casting your vote and selecting the appropriate answer. We thank you for your contributions on behalf of the research team.")
gr.Markdown("## Instructions")
gr.Markdown(
"""
1. First, read the provided question carefully.
2. Second, read both responses carefully.
3. Finally, select the model that best resembles a human in terms of response quality."""
)
current_instruction = gr.State(instruction)
label_1_state = gr.State(label_1)
label_2_state = gr.State(label_2)
pair_name_state = gr.State(pair_name)
question_display = gr.Markdown(value=f"### Question:\n{instruction}")
with gr.Row():
with gr.Column():
response_1_display = gr.HTML(format_response_1_html(response_1))
with gr.Column():
response_2_display = gr.HTML(format_response_2_html(response_2))
with gr.Row():
selected_response = gr.Radio(
["Answer 1", "Answer 2"],
label="Which answer is better?",
interactive=True
)
submit_btn = gr.Button("Submit Choice")
status_output = gr.Textbox(
interactive=False,
label="Status",
value="Select an answer and click Submit"
)
submit_btn.click(
fn=submit_choice,
inputs=[
selected_response,
current_instruction,
label_1_state,
label_2_state,
pair_name_state
],
outputs=[
question_display,
response_1_display,
response_2_display,
label_1_state,
label_2_state,
pair_name_state,
status_output
]
)
return demo
if __name__ == "__main__":
interface = create_interface()
interface.launch(share=True)
|