Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from langchain.vectorstores import FAISS
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
|
5 |
+
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2")
|
6 |
+
import json
|
7 |
+
with open("tasks.json", "r",encoding="utf-8") as json_file:
|
8 |
+
global data
|
9 |
+
data = json.load(json_file)
|
10 |
+
def find_index(sentence):
|
11 |
+
global data
|
12 |
+
for key, value in data.items():
|
13 |
+
for i,j in value.items():
|
14 |
+
for s in j:
|
15 |
+
if sentence == s:
|
16 |
+
return i
|
17 |
+
for x,item in data.items():
|
18 |
+
texts = []
|
19 |
+
for key,value in item.items():
|
20 |
+
for each in value:
|
21 |
+
print(find_index(each))
|
22 |
+
texts.append(each)
|
23 |
+
globals()[f"faiss_{x}"] = FAISS.from_texts(texts,HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",model_kwargs={'device':'cpu'}))
|
24 |
+
|
25 |
+
from fastapi import FastAPI
|
26 |
+
app = FastAPI()
|
27 |
+
@app.get("/")
|
28 |
+
def transcribe_the_command(audio_path,state):
|
29 |
+
transcript = pipe(audio_path)["text"]
|
30 |
+
similar = globals()[f"faiss_{state}"].similarity_search(transcript)[0].page_content
|
31 |
+
print(similar)
|
32 |
+
reply = find_index(similar)
|
33 |
+
return reply
|
34 |
+
import gradio as gr
|
35 |
+
iface = gr.Interface(
|
36 |
+
fn=transcribe_the_command,
|
37 |
+
inputs=[gr.Textbox(),gr.Textbox()],
|
38 |
+
outputs="text",
|
39 |
+
title="Whisper Small",
|
40 |
+
description="Realtime demo for intent recognition using a Whisper small model.",
|
41 |
+
)
|
42 |
+
|
43 |
+
iface.launch(share="true")
|