Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,219 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import librosa
|
5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
11 |
|
12 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
warn_output = ""
|
14 |
-
if (
|
15 |
-
warn_output =
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
elif (
|
20 |
return "ERROR: You have to either use the microphone or upload an audio file"
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
fn=transcribe,
|
34 |
inputs=[
|
35 |
-
gr.inputs.Audio(source="microphone", type=
|
36 |
-
gr.inputs.Audio(source="upload", type=
|
37 |
],
|
38 |
outputs="text",
|
39 |
layout="horizontal",
|
40 |
theme="huggingface",
|
41 |
-
title="
|
42 |
-
allow_flagging=
|
43 |
)
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""demo 2/3.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1QeNS57tZzvJudeNjQczKJ-PbN0l1tK6V
|
8 |
+
|
9 |
+
# Import library
|
10 |
+
"""
|
11 |
+
import os
|
12 |
import librosa
|
13 |
+
import gradio as gr
|
14 |
+
import noisereduce as nr
|
15 |
+
from scipy.io import wavfile
|
16 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
17 |
+
|
18 |
+
"""# Load model"""
|
19 |
+
|
20 |
+
from google.colab import drive
|
21 |
+
import os
|
22 |
+
drive.mount('/content/gdrive')
|
23 |
+
|
24 |
+
# load model and processor"
|
25 |
+
processor = WhisperProcessor.from_pretrained("/content/gdrive/MyDrive/ColabNotebookShared/Speech2TextHuyenNguyen/Model/FPTVinTest2")
|
26 |
+
model = WhisperForConditionalGeneration.from_pretrained("/content/gdrive/MyDrive/ColabNotebookShared/Speech2TextHuyenNguyen/Model/FPTVinTest2/checkpoint-1332").to("cuda")
|
27 |
+
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(task = "transcribe")
|
28 |
+
|
29 |
+
"""# Slipt audio"""
|
30 |
+
|
31 |
+
from pydub import AudioSegment
|
32 |
+
|
33 |
+
def preprocessing(path):
|
34 |
+
# CONVERT MP3 -> WAV
|
35 |
+
type_file = path.split(".")[-1]
|
36 |
+
sound = AudioSegment.from_file(path, type_file)
|
37 |
+
path_list = []
|
38 |
+
|
39 |
+
# SPLIT AUDIO
|
40 |
+
time_audio = int(sound.duration_seconds / 20) + 1
|
41 |
+
for i in range(time_audio):
|
42 |
+
t1 = i * 20 * 1000
|
43 |
+
t2 = (i+1) * 20 * 1000
|
44 |
+
if i == (time_audio-1):
|
45 |
+
newAudio = sound[t1:]
|
46 |
+
else:
|
47 |
+
newAudio = sound[t1:t2]
|
48 |
+
|
49 |
+
newAudio = newAudio.split_to_mono()[0]
|
50 |
+
newAudio = newAudio.set_frame_rate(16000) # convert frequency : mọi freq --> 16000kHz
|
51 |
+
audio_path = '/content/new_audio' + str(i) + '.wav'
|
52 |
+
newAudio.export(audio_path, format="wav")
|
53 |
+
path_list.append(audio_path)
|
54 |
+
return path_list
|
55 |
+
|
56 |
+
"""# Capitalization"""
|
57 |
+
|
58 |
+
!git lfs install
|
59 |
+
!git clone https://github.com/huyenxam/Vicap.git
|
60 |
+
|
61 |
+
# Commented out IPython magic to ensure Python compatibility.
|
62 |
+
# %cd {"/content/Vicap"}
|
63 |
+
|
64 |
+
import os
|
65 |
+
from gec_model import GecBERTModel
|
66 |
+
|
67 |
+
cache_dir = "./"
|
68 |
+
model_cap = GecBERTModel(
|
69 |
+
vocab_path=os.path.join(cache_dir, "vocabulary"),
|
70 |
+
model_paths="dragonSwing/vibert-capu",
|
71 |
+
split_chunk=True
|
72 |
+
)
|
73 |
+
|
74 |
+
"""# Spelling Correction"""
|
75 |
|
76 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
77 |
+
tokenizer_spell = AutoTokenizer.from_pretrained("VietAI/vit5-base")
|
78 |
+
model_spell = AutoModelForSeq2SeqLM.from_pretrained("HuyenNguyen/Vi-test1")
|
79 |
+
model_spell.cuda()
|
80 |
|
81 |
+
def spelling_text(text):
|
82 |
+
encoding = tokenizer_spell(text, return_tensors="pt")
|
83 |
+
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
|
84 |
+
outputs = model_spell.generate(
|
85 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
86 |
+
max_length=30,
|
87 |
+
)
|
88 |
|
89 |
+
for output in outputs:
|
90 |
+
line = tokenizer_spell.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
91 |
+
return line
|
92 |
|
93 |
+
def spelling(transcription):
|
94 |
+
sentences = transcription.split(" ")
|
95 |
+
len_sen = int(len(sentences) / 25) + 1
|
96 |
+
result = ""
|
97 |
+
for i in range(len_sen):
|
98 |
+
t1 = i * 24
|
99 |
+
t2 = (i+1) * 24
|
100 |
+
if i == (len_sen - 1):
|
101 |
+
text = " ".join(sentences[t1:])
|
102 |
+
else:
|
103 |
+
text = " ".join(sentences[t1:t2])
|
104 |
+
result = result + " " + spelling_text(text)
|
105 |
+
|
106 |
+
return result
|
107 |
+
|
108 |
+
"""# Speech To Text"""
|
109 |
+
|
110 |
+
import torch
|
111 |
+
import numpy as np
|
112 |
+
import gradio as gr
|
113 |
+
from scipy.io.wavfile import write
|
114 |
+
import pytube as pt
|
115 |
+
from transformers import pipeline
|
116 |
+
from huggingface_hub import model_info
|
117 |
+
|
118 |
+
def transcribe(microphone, file_upload):
|
119 |
warn_output = ""
|
120 |
+
if (microphone is not None) and (file_upload is not None):
|
121 |
+
warn_output = (
|
122 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
123 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
124 |
+
)
|
125 |
|
126 |
+
elif (microphone is None) and (file_upload is None):
|
127 |
return "ERROR: You have to either use the microphone or upload an audio file"
|
128 |
|
129 |
+
path = microphone if microphone is not None else file_upload
|
130 |
+
|
131 |
+
X_new, sr_new = librosa.load(path)
|
132 |
+
dst = "/content/audio.wav"
|
133 |
+
write(dst, sr_new, X_new)
|
134 |
+
|
135 |
+
# Split audio
|
136 |
+
transcription = ""
|
137 |
+
path_list = preprocessing(dst)
|
138 |
+
for audio_path in path_list:
|
139 |
+
# X, sr = noise(audio_path)
|
140 |
+
X, sr = librosa.load(audio_path, sr=16000)
|
141 |
+
input_features = processor(X.astype('float16'), return_tensors="pt").input_features
|
142 |
+
# predicted_ids = model.generate(input_features.to("cuda"), temperature=1.0)
|
143 |
+
predicted_ids = model.generate(input_features.to("cuda"))
|
144 |
+
text = processor.batch_decode(predicted_ids, skip_special_tokens = True)[0]
|
145 |
+
transcription = transcription + " " + text
|
146 |
+
|
147 |
+
transcription_spell = spelling(transcription)
|
148 |
|
149 |
+
transcription_cap = model_cap(transcription_spell)[0]
|
150 |
+
|
151 |
+
# sentence_result = "Câu gốc: " + transcription + "\n" + "Câu sửa lỗi chính tả: " + transcription_spell + "\n" + "Thêm dấu: " + transcription_cap
|
152 |
+
return transcription_cap
|
153 |
+
|
154 |
|
155 |
+
def _return_yt_html_embed(yt_url):
|
156 |
+
video_id = yt_url.split("?v=")[-1]
|
157 |
+
HTML_str = (
|
158 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
159 |
+
" </center>"
|
160 |
+
)
|
161 |
+
return HTML_str
|
162 |
|
163 |
|
164 |
+
def yt_transcribe(yt_url):
|
165 |
+
# yt = pt.YouTube(yt_url)
|
166 |
+
# html_embed_str = _return_yt_html_embed(yt_url)
|
167 |
+
# stream = yt.streams.filter(only_audio=True)[0]
|
168 |
+
# src = "/content/audio.mp3"
|
169 |
+
# dst = "/content/audio.wav"
|
170 |
+
# stream.download(filename=src)
|
171 |
+
|
172 |
+
# X_new, sr_new = librosa.load(src)
|
173 |
+
|
174 |
+
# write(dst, sr_new, X_new)
|
175 |
+
# # X_new, sr_new = librosa.load(src)
|
176 |
+
# path_list = preprocessing(dst)
|
177 |
+
# transcription = " "
|
178 |
+
# for audio_path in path_list:
|
179 |
+
# # X, sr = noise(audio_path)
|
180 |
+
# X, sr = librosa.load(audio_path, sr=16000)
|
181 |
+
# input_features = processor(X.astype('float16'), return_tensors="pt").input_features
|
182 |
+
# predicted_ids = model.generate(input_features.to("cuda"))
|
183 |
+
# text = processor.batch_decode(predicted_ids, skip_special_tokens = True)[0]
|
184 |
+
# transcription = transcription + " " + text
|
185 |
+
|
186 |
+
# transcription = spelling(transcription)
|
187 |
+
# transcription = model_cap(transcription)[0]
|
188 |
+
return "ouput", 'This feature is temporarily locked'
|
189 |
+
|
190 |
+
|
191 |
+
demo = gr.Blocks()
|
192 |
+
|
193 |
+
mf_transcribe = gr.Interface(
|
194 |
fn=transcribe,
|
195 |
inputs=[
|
196 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
197 |
+
gr.inputs.Audio(source="upload", type="filepath", optional=True),
|
198 |
],
|
199 |
outputs="text",
|
200 |
layout="horizontal",
|
201 |
theme="huggingface",
|
202 |
+
title="PYLAB Demo: Transcribe Audio",
|
203 |
+
allow_flagging="never",
|
204 |
)
|
205 |
|
206 |
+
yt_transcribe = gr.Interface(
|
207 |
+
fn=yt_transcribe,
|
208 |
+
inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
|
209 |
+
outputs=["html", "text"],
|
210 |
+
layout="horizontal",
|
211 |
+
theme="huggingface",
|
212 |
+
title="PYLAB Demo: Transcribe YouTube",
|
213 |
+
allow_flagging="never",
|
214 |
+
)
|
215 |
+
|
216 |
+
with demo:
|
217 |
+
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
|
218 |
+
|
219 |
+
demo.launch(enable_queue=True)
|