Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_groq import ChatGroq | |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
import tempfile | |
from gtts import gTTS | |
import os | |
def text_to_speech(text): | |
tts = gTTS(text=text, lang='en') | |
audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) | |
temp_filename = audio_file.name | |
tts.save(temp_filename) | |
st.audio(temp_filename, format='audio/mp3') | |
os.remove(temp_filename) | |
def get_pdf_text(pdf_docs): | |
text="" | |
for pdf in pdf_docs: | |
pdf_reader= PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text+= page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vector_store(text_chunks, api_key): | |
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2") | |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
vector_store.save_local("faiss_index") | |
def get_conversational_chain(): | |
prompt_template = """ | |
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in | |
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n | |
Context:\n {context}?\n | |
Question: \n{question}\n | |
Answer: | |
""" | |
model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192") | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
return chain | |
def user_input(user_question, api_key): | |
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2") | |
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
docs = new_db.similarity_search(user_question) | |
chain = get_conversational_chain() | |
response = chain( | |
{"input_documents":docs, "question": user_question} | |
, return_only_outputs=True) | |
print(response) # Debugging line | |
st.write("Replies:") | |
if isinstance(response["output_text"], str): | |
response_list = [response["output_text"]] | |
else: | |
response_list = response["output_text"] | |
for text in response_list: | |
st.write(text) | |
# Convert text to speech for each response | |
text_to_speech(text) | |
def main(): | |
st.set_page_config(layout="centered") | |
st.header("Chat with DOCS") | |
st.markdown("<h1 style='font-size:20px;'>ChatBot by Muhammad Huzaifa</h1>", unsafe_allow_html=True) | |
api_key = st.secrets["inference_api_key"] | |
with st.sidebar: | |
st.header("Chat with PDF") | |
# st.title("Menu:") | |
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit Button", accept_multiple_files=True, type=["pdf"]) | |
if st.button("Submit"): | |
with st.spinner("Processing..."): | |
raw_text = get_pdf_text(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
get_vector_store(text_chunks, api_key) | |
st.success("Done") | |
# Check if any document is uploaded | |
if pdf_docs: | |
user_question = st.text_input("Ask a question from the Docs") | |
if user_question: | |
user_input(user_question, api_key) | |
else: | |
st.write("Please upload a document first to ask questions.") | |
if __name__ == "__main__": | |
main() | |