import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_groq import ChatGroq from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate import tempfile from gtts import gTTS import os def text_to_speech(text): tts = gTTS(text=text, lang='en') audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) temp_filename = audio_file.name tts.save(temp_filename) st.audio(temp_filename, format='audio/mp3') os.remove(temp_filename) def get_pdf_text(pdf_docs): text="" for pdf in pdf_docs: pdf_reader= PdfReader(pdf) for page in pdf_reader.pages: text+= page.extract_text() return text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks, api_key): embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2") vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) vector_store.save_local("faiss_index") def get_conversational_chain(): prompt_template = """ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n Context:\n {context}?\n Question: \n{question}\n Answer: """ model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192") prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain def user_input(user_question, api_key): embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2") new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() response = chain( {"input_documents":docs, "question": user_question} , return_only_outputs=True) print(response) # Debugging line st.write("Replies:") if isinstance(response["output_text"], str): response_list = [response["output_text"]] else: response_list = response["output_text"] for text in response_list: st.write(text) # Convert text to speech for each response text_to_speech(text) def main(): st.set_page_config(layout="centered") st.header("Chat with DOCS") st.markdown("