Huzaifa367 commited on
Commit
c36100d
·
verified ·
1 Parent(s): d8e7f4f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -16
app.py CHANGED
@@ -1,26 +1,27 @@
1
  import gradio as gr
2
  import os
3
  import requests
4
-
5
- # Define the Hugging Face API details
6
- API_URL = "https://api-inference.huggingface.co/models/Huzaifa367/chat-summarizer"
7
- API_TOKEN = os.getenv("AUTH_TOKEN")
8
- HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
9
-
10
- def predict(message, history):
11
  try:
12
- # Send request to the Hugging Face API with only the current message
13
- payload = {"inputs": message}
14
  response = requests.post(API_URL, headers=HEADERS, json=payload)
15
  response.raise_for_status() # Raise exception for non-2xx status codes
16
-
17
- # Extract summary text from the response
18
- summary_text = response.json()["summary_text"]
19
  except requests.exceptions.RequestException as e:
20
- # Handle API request errors
21
- summary_text = f"Error querying Hugging Face API: {e}"
22
-
 
 
 
 
 
 
 
 
 
 
 
23
  return summary_text
24
 
25
  # Launch Gradio chat interface with the predict function
26
- gr.ChatInterface(predict).launch()
 
1
  import gradio as gr
2
  import os
3
  import requests
4
+ def query_huggingface(payload):
 
 
 
 
 
 
5
  try:
 
 
6
  response = requests.post(API_URL, headers=HEADERS, json=payload)
7
  response.raise_for_status() # Raise exception for non-2xx status codes
8
+ return response.json()
 
 
9
  except requests.exceptions.RequestException as e:
10
+ print(f"Error querying Hugging Face API: {e}")
11
+ return {"summary_text": f"Error querying Hugging Face API: {e}"}
12
+
13
+ def respond(user_message):
14
+ # Construct input text for summarization (only user message)
15
+ input_text = f"User: {user_message}"
16
+
17
+ # Query Hugging Face API for summarization
18
+ payload = {"inputs": input_text}
19
+ response = query_huggingface(payload)
20
+
21
+ # Extract summary text from the API response
22
+ summary_text = response.get("summary_text", "No response from Hugging Face API")
23
+
24
  return summary_text
25
 
26
  # Launch Gradio chat interface with the predict function
27
+ gr.ChatInterface(respond).launch()