multi-stage-retrieval-QA / evaluation.py
Hyma7's picture
Upload 6 files
ff15b29 verified
raw
history blame
243 Bytes
from sklearn.metrics import ndcg_score
def evaluate_ndcg(top_k_passages, qrels):
relevance_scores = [1 if doc in qrels else 0 for doc, _ in top_k_passages]
return ndcg_score([relevance_scores], [[1]*len(relevance_scores)], k=10)