Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,45 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
-
from transformers import
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
"The sun is bright.",
|
11 |
-
"Rain falls from the sky.",
|
12 |
-
"Flowers bloom in spring."
|
13 |
-
]
|
14 |
|
15 |
# Load models
|
16 |
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
17 |
-
ranking_model =
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
relevant_passages = [p for p in passages if any(keyword in p.lower() for keyword in keywords)]
|
22 |
-
return relevant_passages if relevant_passages else passages # Return all if no match
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
+
from transformers import CrossEncoder
|
5 |
+
import numpy as np
|
6 |
|
7 |
+
# Load the dataset
|
8 |
+
def load_dataset():
|
9 |
+
# Load the Databricks Dolly 15K dataset
|
10 |
+
return pd.read_csv('dolly_15k.csv')
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Load models
|
13 |
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
14 |
+
ranking_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
15 |
|
16 |
+
# Streamlit UI
|
17 |
+
st.title("Multi-Stage Text Retrieval Pipeline for QA")
|
|
|
|
|
18 |
|
19 |
+
question = st.text_input("Enter a question:")
|
20 |
+
if question:
|
21 |
+
dataset = load_dataset()
|
22 |
|
23 |
+
# Generate embeddings for the questions and the dataset passages
|
24 |
+
passages = dataset['response'].tolist() # Adjust this according to your dataset's structure
|
25 |
+
question_embedding = embedding_model.encode(question)
|
26 |
+
passage_embeddings = embedding_model.encode(passages)
|
27 |
+
|
28 |
+
# Retrieve top-k passages based on embeddings
|
29 |
+
top_k = 5
|
30 |
+
similarities = np.inner(question_embedding, passage_embeddings)
|
31 |
+
top_k_indices = np.argsort(similarities)[-top_k:][::-1]
|
32 |
+
|
33 |
+
relevant_passages = [passages[i] for i in top_k_indices]
|
34 |
+
|
35 |
+
st.subheader("Relevant passages:")
|
36 |
+
for passage in relevant_passages:
|
37 |
+
st.write(passage)
|
38 |
+
|
39 |
+
# Re-ranking the passages
|
40 |
+
ranked_scores = ranking_model.predict([[question, passage] for passage in relevant_passages])
|
41 |
+
ranked_passages = sorted(zip(relevant_passages, ranked_scores), key=lambda x: x[1], reverse=True)
|
42 |
+
|
43 |
+
st.subheader("Ranked passages:")
|
44 |
+
for passage, score in ranked_passages:
|
45 |
+
st.write(f"{passage} (Score: {score:.2f})")
|