Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,103 +1,51 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
import streamlit as st
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
7 |
-
from beir import util
|
8 |
-
from beir.datasets.data_loader import GenericDataLoader
|
9 |
-
#from beir import EvaluateRetrieval
|
10 |
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
url = f"https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{dataset_name}.zip"
|
18 |
-
util.download_and_unzip(url, "datasets/")
|
19 |
-
|
20 |
-
corpus, queries, qrels = GenericDataLoader(data_path).load(split="test")
|
21 |
-
return corpus, queries, qrels
|
22 |
-
|
23 |
-
# Function for candidate retrieval
|
24 |
-
def candidate_retrieval(corpus, queries):
|
25 |
-
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
26 |
-
corpus_ids = list(corpus.keys())
|
27 |
-
corpus_texts = [corpus[pid]["text"] for pid in corpus_ids]
|
28 |
-
corpus_embeddings = embed_model.encode(corpus_texts, convert_to_numpy=True)
|
29 |
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
query_embeddings = embed_model.encode(query_texts, convert_to_numpy=True)
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
for i, query in enumerate(queries.values()):
|
46 |
-
query_passage_pairs = [(query, corpus[corpus_ids[idx]]["text"]) for idx in retrieved_indices[i]]
|
47 |
-
inputs = tokenizer(query_passage_pairs, padding=True, truncation=True, return_tensors="pt")
|
48 |
-
scores = cross_encoder_model(**inputs).logits.squeeze(-1)
|
49 |
-
|
50 |
-
top_reranked_passages = [passage for _, passage in sorted(zip(scores, query_passage_pairs), key=lambda x: x[0], reverse=True)]
|
51 |
-
reranked_passages.append(top_reranked_passages)
|
52 |
-
|
53 |
-
return reranked_passages
|
54 |
|
55 |
-
#
|
56 |
-
""""
|
57 |
-
def evaluate(qrels, retrieved_indices, reranked_passages, queries):
|
58 |
-
evaluator = EvaluateRetrieval()
|
59 |
-
|
60 |
-
results_stage1 = {}
|
61 |
-
for i, query_id in enumerate(queries.keys()):
|
62 |
-
results_stage1[query_id] = {corpus_ids[idx]: 1 for idx in retrieved_indices[i]}
|
63 |
-
|
64 |
-
ndcg_score_stage1 = evaluator.evaluate(qrels, results_stage1, [10])['NDCG@10']
|
65 |
-
|
66 |
-
results_stage2 = {}
|
67 |
-
for i, query_id in enumerate(queries.keys()):
|
68 |
-
results_stage2[query_id] = {}
|
69 |
-
for passage in reranked_passages[i]:
|
70 |
-
for pid, doc in corpus.items():
|
71 |
-
if doc["text"] == passage[1]:
|
72 |
-
results_stage2[query_id][pid] = 1
|
73 |
-
break
|
74 |
-
|
75 |
-
ndcg_score_stage2 = evaluator.evaluate(qrels, results_stage2, [10])['NDCG@10']
|
76 |
-
return ndcg_score_stage1, ndcg_score_stage2
|
77 |
-
"""
|
78 |
-
# Streamlit app
|
79 |
def main():
|
80 |
-
st.title("Multi-Stage
|
81 |
-
|
82 |
-
if st.button("Load Dataset"):
|
83 |
-
corpus, queries, qrels = load_dataset()
|
84 |
-
st.success("Dataset loaded successfully!")
|
85 |
-
|
86 |
-
if st.button("Run Candidate Retrieval"):
|
87 |
-
retrieved_indices, corpus_ids = candidate_retrieval(corpus, queries)
|
88 |
-
st.success("Candidate retrieval completed!")
|
89 |
-
st.write("Retrieved indices:", retrieved_indices)
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
st.success("Reranking completed!")
|
94 |
-
st.write("Reranked passages:", reranked_passages)
|
95 |
|
96 |
-
|
97 |
-
ndcg_score_stage1, ndcg_score_stage2 = evaluate(qrels, retrieved_indices, reranked_passages, queries)
|
98 |
-
st.write(f"NDCG@10 for Stage 1 (Candidate Retrieval): {ndcg_score_stage1}")
|
99 |
-
st.write(f"NDCG@10 for Stage 2 (Reranking): {ndcg_score_stage2}")
|
100 |
-
"""
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
main()
|
|
|
1 |
import os
|
2 |
+
import urllib.request
|
3 |
+
import zipfile
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
def download_and_extract_dataset():
|
7 |
+
dataset_url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nq.zip"
|
8 |
+
dataset_zip_path = "nq.zip"
|
9 |
+
data_path = "./datasets/nq"
|
10 |
|
11 |
+
# Download the dataset if not already downloaded
|
12 |
+
if not os.path.exists(dataset_zip_path):
|
13 |
+
st.write("Downloading the dataset... This may take a few minutes.")
|
14 |
+
urllib.request.urlretrieve(dataset_url, dataset_zip_path)
|
15 |
+
st.write("Download complete!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Unzip the dataset if not already unzipped
|
18 |
+
if not os.path.exists(data_path):
|
19 |
+
st.write("Unzipping the dataset...")
|
20 |
+
with zipfile.ZipFile(dataset_zip_path, 'r') as zip_ref:
|
21 |
+
zip_ref.extractall("./datasets")
|
22 |
+
st.write("Dataset unzipped!")
|
23 |
|
24 |
+
return data_path
|
|
|
25 |
|
26 |
+
# Function to load the dataset
|
27 |
+
def load_dataset():
|
28 |
+
from beir.datasets.data_loader import GenericDataLoader
|
29 |
+
|
30 |
+
data_path = download_and_extract_dataset()
|
31 |
|
32 |
+
# Load dataset using GenericDataLoader
|
33 |
+
st.write("Loading the dataset...")
|
34 |
+
corpus, queries, qrels = GenericDataLoader(data_path).load(split="test")
|
35 |
+
st.write(f"Corpus Size: {len(corpus)}")
|
36 |
+
st.write(f"Queries Size: {len(queries)}")
|
37 |
+
st.write(f"Qrels Size: {len(qrels)}")
|
38 |
|
39 |
+
return corpus, queries, qrels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Streamlit main execution
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def main():
|
43 |
+
st.title("Multi-Stage Retrieval Pipeline")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# Load the dataset
|
46 |
+
corpus, queries, qrels = load_dataset()
|
|
|
|
|
47 |
|
48 |
+
st.write("Dataset loaded successfully!")
|
|
|
|
|
|
|
|
|
49 |
|
50 |
if __name__ == "__main__":
|
51 |
main()
|