File size: 6,811 Bytes
a336311
 
 
 
 
 
 
 
 
4c0c6d3
 
9b1fd5f
4c0c6d3
 
 
 
a336311
 
 
 
 
 
4c0c6d3
a336311
 
 
 
 
 
 
 
 
 
 
4c0c6d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b1fd5f
 
 
 
a336311
 
 
 
4c0c6d3
 
 
 
 
 
 
 
 
 
a336311
9b1fd5f
 
 
 
 
 
 
 
 
38fc6d8
9b1fd5f
 
38fc6d8
39ae122
9b1fd5f
d70f173
 
 
9b1fd5f
 
 
 
 
 
 
 
a336311
4c0c6d3
 
 
 
 
 
 
 
 
 
 
 
a336311
4c0c6d3
 
 
 
 
 
 
 
9b1fd5f
 
 
4c0c6d3
 
 
 
 
 
 
38fc6d8
9b1fd5f
 
4c0c6d3
 
 
 
 
291a445
4c0c6d3
 
 
 
 
 
 
a336311
9b1fd5f
a336311
 
 
 
4c0c6d3
 
 
 
 
a336311
4c0c6d3
a336311
 
 
 
 
4c0c6d3
a336311
4c0c6d3
a336311
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_core.documents import Document

from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from uuid import uuid4
from prompt import *
import random
from itext2kg.models import KnowledgeGraph
from langchain.text_splitter import RecursiveCharacterTextSplitter


import faiss
from langchain_community.docstore.in_memory import InMemoryDocstore

from pydantic import BaseModel, Field
from dotenv import load_dotenv
import os

from langchain_core.tools import tool
import pickle

import unicodedata

load_dotenv()
index_name = os.environ.get("INDEX_NAME")
# Global initialization
embedding_model = "text-embedding-3-small"

embedding = OpenAIEmbeddings(model=embedding_model)
# vector_store = PineconeVectorStore(index=index_name, embedding=embedding)

def advanced_graph_to_json(graph:KnowledgeGraph):
    nodes = []
    edges = []
    for node in graph.entities:
        node_id = node.name.replace(" ", "_")
        label = node.name
        type = node.label
        nodes.append({"id": node_id, "label": label, "type": type})
    for relationship in graph.relationships:
        source = relationship.startEntity
        source_id = source.name.replace(" ", "_")
        target = relationship.endEntity
        target_id = target.name.replace(" ", "_")
        label = relationship.name
        edges.append({"source": source_id, "label": label, "cible": target_id})
    return {"noeuds": nodes, "relations": edges}

with open("kg_ia_signature.pkl", "rb") as file:
    loaded_graph = pickle.load(file)
    graph = advanced_graph_to_json(loaded_graph)
    print("Graph loaded")

with open("chunks_ia_signature.pkl", "rb") as file:
    chunks = pickle.load(file)
    print("Chunks loaded")

with open("scenes.pkl", "rb") as file:
    scenes = pickle.load(file)
    print("Scenes loaded")

class sphinx_output(BaseModel):
    question: str = Field(description="The question to ask the user to test if they read the entire book")
    answers: list[str] = Field(description="The possible answers to the question to test if the user read the entire book")

class verify_response_model(BaseModel):
    response: str = Field(description="The response from the user to the question")
    answers: list[str] = Field(description="The possible answers to the question to test if the user read the entire book")
    initial_question: str = Field(description="The question asked to the user to test if they read the entire book")

class verification_score(BaseModel):
    score: float = Field(description="The score of the user's response from 0 to 10 to the question")


llm = ChatOpenAI(model="gpt-4o", max_tokens=300, temperature=0.5)

def split_texts(text : str) -> list[str]:
    splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len,
        is_separator_regex=False,
    )
    return splitter.split_text(text)


#########################################################################
### PAR ICI , CHOISIR UNE SCENE SPECIFIQUE DANS L'ARGUMENT DE LA FONCTION

def get_random_chunk(scene_specific = [4,6]) : # scene_specific = None signifie qu'on considère tout le récit
    if scene_specific:
        scene_specific_content = [scenes[i-1] for i in scene_specific]
        scene_specific_content = " ".join(scene_specific_content)
        chunks_scene = split_texts(scene_specific_content)
        print(f"Scene {scene_specific} has {len(chunks_scene)} chunks")
        print([chunk[0:50] for chunk in chunks_scene])
        print('---')
        chunk_chosen = chunks_scene[random.randint(0, len(chunks_scene) - 1)]
        print(f"Chosen chunk: {chunk_chosen}")
        return chunk_chosen, scene_specific
    
    return chunks[random.randint(0, len(chunks) - 1)],scene_specific


def get_vectorstore() -> FAISS:
    index = faiss.IndexFlatL2(len(embedding.embed_query("hello world")))
    vector_store = FAISS(
        embedding_function=embedding,
        index=index,
        docstore=InMemoryDocstore(),
        index_to_docstore_id={},
    )
    documents = [Document(page_content=chunk) for chunk in chunks]
    uuids = [str(uuid4()) for _ in range(len(documents))]
    vector_store.add_documents(documents=documents, ids=uuids)
    return vector_store

vectore_store = get_vectorstore()


def generate_sphinx_response() -> sphinx_output:
    writer = "Laurent Tripied"
    book_name =  "Limites de l'imaginaire ou limites planétaires"
    summary = summary_text
    excerpt , scene_number = get_random_chunk()
    if scene_number:
        summary = "scene " + str(scene_number)
    prompt = PromptTemplate.from_template(template_sphinx)
    structured_llm = llm.with_structured_output(sphinx_output)
    # Create an LLM chain with the prompt and the LLM
    llm_chain = prompt | structured_llm

    return llm_chain.invoke({"writer":writer,"book_name":book_name,"summary":summary,"excerpt":excerpt})


#############################################################
### PAR ICI , CHOISIR LE DEGRE DE SEVERITE DE LA VERIFICATION
def verify_response(response:str,answers:list[str],question:str) -> bool:
    prompt = PromptTemplate.from_template(template_verify)
    structured_llm = llm.with_structured_output(verification_score)
    llm_chain = prompt | structured_llm
    score = llm_chain.invoke({"response":response,"answers":answers,"initial_question":question})
    if score.score >= 5:
        return True
    

def retrieve_context_from_vectorestore(query:str) -> str:
    retriever = vectore_store.as_retriever(search_type="mmr", search_kwargs={"k": 3})
    return retriever.invoke(query)

        
def generate_stream(query:str,messages = [], model = "gpt-4o-mini", max_tokens = 300, temperature = 1,index_name="",stream=True,vector_store=None):
    try:
        print("init chat")
        print("init template")
        prompt = PromptTemplate.from_template(template)

        writer = "Laurent Tripied"
        name_book = "Limites de l'imaginaire ou limites planétaires"
        name_icon = "Magritte"
        kg = loaded_graph
        print("retreiving context")
        context = retrieve_context_from_vectorestore(query)
        print(f"Context: {context}")
        llm_chain = prompt | llm | StrOutputParser()

        print("streaming")
        if stream:
            return llm_chain.stream({"name_book":name_book,"writer":writer,"name_icon":name_icon,"kg":graph,"context":context,"query":query})
        else:
            return llm_chain.invoke({"name_book":name_book,"writer":writer,"name_icon":name_icon,"kg":graph,"context":context,"query":query})

    except Exception as e:
        print(e)
        return False