Spaces:
Running
Running
Ilyas KHIAT
commited on
Commit
·
5e72909
1
Parent(s):
b4ea9f9
whatif
Browse files
main.py
CHANGED
@@ -133,6 +133,7 @@ async def generate(user_input: UserInput):
|
|
133 |
except Exception as e:
|
134 |
return {"message": str(e)}
|
135 |
|
|
|
136 |
@app.post("/whatif")
|
137 |
async def generate_whatif(whatif_input: WhatifInput):
|
138 |
try:
|
|
|
133 |
except Exception as e:
|
134 |
return {"message": str(e)}
|
135 |
|
136 |
+
|
137 |
@app.post("/whatif")
|
138 |
async def generate_whatif(whatif_input: WhatifInput):
|
139 |
try:
|
rag.py
CHANGED
@@ -11,7 +11,6 @@ import random
|
|
11 |
from itext2kg.models import KnowledgeGraph
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
|
14 |
-
|
15 |
import faiss
|
16 |
from langchain_community.docstore.in_memory import InMemoryDocstore
|
17 |
|
@@ -27,7 +26,7 @@ import unicodedata
|
|
27 |
load_dotenv()
|
28 |
index_name = os.environ.get("INDEX_NAME")
|
29 |
# Global initialization
|
30 |
-
embedding_model = "text-embedding-3-
|
31 |
|
32 |
embedding = OpenAIEmbeddings(model=embedding_model)
|
33 |
# vector_store = PineconeVectorStore(index=index_name, embedding=embedding)
|
@@ -183,7 +182,7 @@ def generate_whatif_stream(question:str,response:str, stream:bool = True) -> str
|
|
183 |
context = retrieve_context_from_vectorestore(f"{question} {response}")
|
184 |
print(f"Context: {context}")
|
185 |
|
186 |
-
if
|
187 |
return llm_chain.stream({"question":question,"response":response,"context":context})
|
188 |
else:
|
189 |
return llm_chain.invoke({"question":question,"response":response,"context":context})
|
|
|
11 |
from itext2kg.models import KnowledgeGraph
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
|
|
|
14 |
import faiss
|
15 |
from langchain_community.docstore.in_memory import InMemoryDocstore
|
16 |
|
|
|
26 |
load_dotenv()
|
27 |
index_name = os.environ.get("INDEX_NAME")
|
28 |
# Global initialization
|
29 |
+
embedding_model = "text-embedding-3-small"
|
30 |
|
31 |
embedding = OpenAIEmbeddings(model=embedding_model)
|
32 |
# vector_store = PineconeVectorStore(index=index_name, embedding=embedding)
|
|
|
182 |
context = retrieve_context_from_vectorestore(f"{question} {response}")
|
183 |
print(f"Context: {context}")
|
184 |
|
185 |
+
if stream:
|
186 |
return llm_chain.stream({"question":question,"response":response,"context":context})
|
187 |
else:
|
188 |
return llm_chain.invoke({"question":question,"response":response,"context":context})
|