File size: 33,554 Bytes
9bb46b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d11d05
 
9bb46b0
 
 
dcb9476
9bb46b0
 
 
6d84157
9bb46b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d11d05
 
 
 
9bb46b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb4f85
9bb46b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7e6de8
9bb46b0
 
 
 
dcb9476
9bb46b0
 
 
 
 
 
 
 
 
dcb9476
6d11d05
 
 
 
 
dcb9476
 
 
6d11d05
 
 
 
 
dcb9476
 
 
6d11d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb9476
 
 
9bb46b0
 
dcb9476
6d11d05
dcb9476
6d11d05
 
dcb9476
6d11d05
dcb9476
 
6d11d05
f9cf421
 
 
 
 
 
 
dcb4f85
6d11d05
b5c067b
6d11d05
b5c067b
 
 
6d11d05
b5c067b
 
f9cf421
b5c067b
 
dcb9476
b5c067b
 
 
 
9bb46b0
 
 
 
 
 
 
 
6d11d05
 
f9cf421
 
6d11d05
 
 
9bb46b0
 
3fa8111
9bb46b0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
# coding=utf-8
# Copyright 2021 The IDEA Authors. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from logging import basicConfig
import torch
from torch import nn
import json
from tqdm import tqdm
import os
import numpy as np
from transformers import BertTokenizer, AutoTokenizer
import pytorch_lightning as pl

from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import loggers
from torch.utils.data import Dataset, DataLoader
from transformers.optimization import get_linear_schedule_with_warmup
from transformers import BertForMaskedLM, AlbertTokenizer
from transformers import AutoConfig
from transformers import MegatronBertForMaskedLM
from modeling_deberta_v2 import DebertaV2ForMaskedLM
from modeling_albert import AlbertForMaskedLM
import argparse
import copy
import streamlit as st
import time
# os.environ["CUDA_VISIBLE_DEVICES"] = '6'



class UniMCDataset(Dataset):
    def __init__(self, data, yes_token, no_token, tokenizer, args, used_mask=True):
        super().__init__()

        self.tokenizer = tokenizer
        self.max_length = args.max_length
        self.num_labels = args.num_labels
        self.used_mask = used_mask
        self.data = data
        self.args = args
        self.yes_token = yes_token
        self.no_token = no_token

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        return self.encode(self.data[index], self.used_mask)

    def get_token_type(self, sep_idx, max_length):
        token_type_ids = np.zeros(shape=(max_length,))
        for i in range(len(sep_idx)-1):
            if i % 2 == 0:
                ty = np.ones(shape=(sep_idx[i+1]-sep_idx[i],))
            else:
                ty = np.zeros(shape=(sep_idx[i+1]-sep_idx[i],))
            token_type_ids[sep_idx[i]:sep_idx[i+1]] = ty

        return token_type_ids

    def get_position_ids(self, label_idx, max_length, question_len):
        question_position_ids = np.arange(question_len)
        label_position_ids = np.arange(question_len, label_idx[-1])
        for i in range(len(label_idx)-1):
            label_position_ids[label_idx[i]-question_len:label_idx[i+1]-question_len] = np.arange(
                question_len, question_len+label_idx[i+1]-label_idx[i])
        max_len_label = max(label_position_ids)
        text_position_ids = np.arange(
            max_len_label+1, max_length+max_len_label+1-label_idx[-1])
        position_ids = list(question_position_ids) + \
            list(label_position_ids)+list(text_position_ids)
        if max_length <= 512:
            return position_ids[:max_length]
        else:
            for i in range(512, max_length):
                if position_ids[i] > 511:
                    position_ids[i] = 511
            return position_ids[:max_length]

    def get_att_mask(self, attention_mask, label_idx, question_len):
        max_length = len(attention_mask)
        attention_mask = np.array(attention_mask)
        attention_mask = np.tile(attention_mask[None, :], (max_length, 1))

        zeros = np.zeros(
            shape=(label_idx[-1]-question_len, label_idx[-1]-question_len))
        attention_mask[question_len:label_idx[-1],
                       question_len:label_idx[-1]] = zeros

        for i in range(len(label_idx)-1):
            label_token_length = label_idx[i+1]-label_idx[i]
            if label_token_length <= 0:
                print('label_idx', label_idx)
                print('question_len', question_len)
                continue
            ones = np.ones(shape=(label_token_length, label_token_length))
            attention_mask[label_idx[i]:label_idx[i+1],
                           label_idx[i]:label_idx[i+1]] = ones

        return attention_mask

    def random_masking(self, token_ids, maks_rate, mask_start_idx, max_length, mask_id, tokenizer):
        rands = np.random.random(len(token_ids))
        source, target = [], []
        for i, (r, t) in enumerate(zip(rands, token_ids)):
            if i < mask_start_idx:
                source.append(t)
                target.append(-100)
                continue
            if r < maks_rate * 0.8:
                source.append(mask_id)
                target.append(t)
            elif r < maks_rate * 0.9:
                source.append(t)
                target.append(t)
            elif r < maks_rate:
                source.append(np.random.choice(tokenizer.vocab_size - 1) + 1)
                target.append(t)
            else:
                source.append(t)
                target.append(-100)
        while len(source) < max_length:
            source.append(0)
            target.append(-100)
        return source[:max_length], target[:max_length]

    def encode(self, item, used_mask=False):

        while len(self.tokenizer.encode('[MASK]'.join(item['choice']))) > self.max_length-32:
            item['choice'] = [c[:int(len(c)/2)] for c in item['choice']]

        if 'textb' in item.keys() and item['textb'] != '':
            if 'question' in item.keys() and item['question'] != '':
                texta = '[MASK]' + '[MASK]'.join(item['choice']) + '[SEP]' + \
                    item['question'] + '[SEP]' + \
                        item['texta']+'[SEP]'+item['textb']
            else:
                texta = '[MASK]' + '[MASK]'.join(item['choice']) + '[SEP]' + \
                        item['texta']+'[SEP]'+item['textb']

        else:
            if 'question' in item.keys() and item['question'] != '':
                texta = '[MASK]' + '[MASK]'.join(item['choice']) + '[SEP]' + \
                    item['question'] + '[SEP]' + item['texta']
            else:
                texta = '[MASK]' + '[MASK]'.join(item['choice']) + \
                    '[SEP]' + item['texta']

        encode_dict = self.tokenizer.encode_plus(texta,
                                                 max_length=self.max_length,
                                                 padding='max_length',
                                                 truncation='longest_first')

        encode_sent = encode_dict['input_ids']
        token_type_ids = encode_dict['token_type_ids']
        attention_mask = encode_dict['attention_mask']
        sample_max_length = sum(encode_dict['attention_mask'])

        if 'label' not in item.keys():
            item['label'] = 0
            item['answer'] = ''

        question_len = 1
        label_idx = [question_len]
        for choice in item['choice']:
            cur_mask_idx = label_idx[-1] + \
                len(self.tokenizer.encode(choice, add_special_tokens=False))+1
            label_idx.append(cur_mask_idx)

        token_type_ids = [0]*question_len+[1] * \
            (label_idx[-1]-label_idx[0]+1)+[0]*self.max_length
        token_type_ids = token_type_ids[:self.max_length]

        attention_mask = self.get_att_mask(
            attention_mask, label_idx, question_len)

        position_ids = self.get_position_ids(
            label_idx, self.max_length, question_len)

        clslabels_mask = np.zeros(shape=(len(encode_sent),))
        clslabels_mask[label_idx[:-1]] = 10000
        clslabels_mask = clslabels_mask-10000

        mlmlabels_mask = np.zeros(shape=(len(encode_sent),))
        mlmlabels_mask[label_idx[0]] = 1

        used_mask = False
        if used_mask:
            mask_rate = 0.1*np.random.choice(4, p=[0.3, 0.3, 0.25, 0.15])
            source, target = self.random_masking(token_ids=encode_sent, maks_rate=mask_rate,
                                                 mask_start_idx=label_idx[-1], max_length=self.max_length,
                                                 mask_id=self.tokenizer.mask_token_id, tokenizer=self.tokenizer)
        else:
            source, target = encode_sent[:], encode_sent[:]

        source = np.array(source)
        target = np.array(target)
        source[label_idx[:-1]] = self.tokenizer.mask_token_id
        target[label_idx[:-1]] = self.no_token
        target[label_idx[item['label']]] = self.yes_token

        input_ids = source[:sample_max_length]
        token_type_ids = token_type_ids[:sample_max_length]
        attention_mask = attention_mask[:sample_max_length, :sample_max_length]
        position_ids = position_ids[:sample_max_length]
        mlmlabels = target[:sample_max_length]
        clslabels = label_idx[item['label']]
        clslabels_mask = clslabels_mask[:sample_max_length]
        mlmlabels_mask = mlmlabels_mask[:sample_max_length]

        return {
            "input_ids": torch.tensor(input_ids).long(),
            "token_type_ids": torch.tensor(token_type_ids).long(),
            "attention_mask": torch.tensor(attention_mask).float(),
            "position_ids": torch.tensor(position_ids).long(),
            "mlmlabels": torch.tensor(mlmlabels).long(),
            "clslabels": torch.tensor(clslabels).long(),
            "clslabels_mask": torch.tensor(clslabels_mask).float(),
            "mlmlabels_mask": torch.tensor(mlmlabels_mask).float(),
        }


class UniMCDataModel(pl.LightningDataModule):
    @staticmethod
    def add_data_specific_args(parent_args):
        parser = parent_args.add_argument_group('TASK NAME DataModel')
        parser.add_argument('--num_workers', default=8, type=int)
        parser.add_argument('--batchsize', default=16, type=int)
        parser.add_argument('--max_length', default=512, type=int)
        return parent_args

    def __init__(self, train_data, val_data, yes_token, no_token, tokenizer, args):
        super().__init__()
        self.batchsize = args.batchsize

        self.train_data = UniMCDataset(
            train_data, yes_token, no_token, tokenizer, args, True)
        self.valid_data = UniMCDataset(
            val_data, yes_token, no_token, tokenizer, args, False)

    def train_dataloader(self):
        return DataLoader(self.train_data, shuffle=True, collate_fn=self.collate_fn, batch_size=self.batchsize, pin_memory=False)

    def val_dataloader(self):
        return DataLoader(self.valid_data, shuffle=False, collate_fn=self.collate_fn, batch_size=self.batchsize, pin_memory=False)

    def collate_fn(self, batch):
        '''
        Aggregate a batch data.
        batch = [ins1_dict, ins2_dict, ..., insN_dict]
        batch_data = {'sentence':[ins1_sentence, ins2_sentence...], 'input_ids':[ins1_input_ids, ins2_input_ids...], ...}
        '''
        batch_data = {}
        for key in batch[0]:
            batch_data[key] = [example[key] for example in batch]

        batch_data['input_ids'] = nn.utils.rnn.pad_sequence(batch_data['input_ids'],
                                                            batch_first=True,
                                                            padding_value=0)
        batch_data['clslabels_mask'] = nn.utils.rnn.pad_sequence(batch_data['clslabels_mask'],
                                                                 batch_first=True,
                                                                 padding_value=-10000)

        batch_size, batch_max_length = batch_data['input_ids'].shape
        for k, v in batch_data.items():
            if k == 'input_ids' or k == 'clslabels_mask':
                continue
            if k == 'clslabels':
                batch_data[k] = torch.tensor(v).long()
                continue
            if k != 'attention_mask':
                batch_data[k] = nn.utils.rnn.pad_sequence(v,
                                                          batch_first=True,
                                                          padding_value=0)
            else:
                attention_mask = torch.zeros(
                    (batch_size, batch_max_length, batch_max_length))
                for i, att in enumerate(v):
                    sample_length, _ = att.shape
                    attention_mask[i, :sample_length, :sample_length] = att
                batch_data[k] = attention_mask
        return batch_data


class UniMCModel(nn.Module):
    def __init__(self, pre_train_dir, yes_token):
        super().__init__()
        self.config = AutoConfig.from_pretrained(pre_train_dir)
        if self.config.model_type == 'megatron-bert':
            self.bert = MegatronBertForMaskedLM.from_pretrained(pre_train_dir)
        elif self.config.model_type == 'deberta-v2':
            self.bert = DebertaV2ForMaskedLM.from_pretrained(pre_train_dir)
        elif self.config.model_type == 'albert':
            self.bert = AlbertForMaskedLM.from_pretrained(pre_train_dir)
        else:
            self.bert = BertForMaskedLM.from_pretrained(pre_train_dir)
        self.loss_func = torch.nn.CrossEntropyLoss()
        self.yes_token = yes_token

    def forward(self, input_ids, attention_mask, token_type_ids, position_ids=None, mlmlabels=None, clslabels=None, clslabels_mask=None, mlmlabels_mask=None):

        batch_size, seq_len = input_ids.shape
        outputs = self.bert(input_ids=input_ids,
                            attention_mask=attention_mask,
                            position_ids=position_ids,
                            token_type_ids=token_type_ids,
                            labels=mlmlabels)  # (bsz, seq, dim)
        mask_loss = outputs.loss
        mlm_logits = outputs.logits
        cls_logits = mlm_logits[:, :,
                                self.yes_token].view(-1, seq_len)+clslabels_mask

        if mlmlabels == None:
            return 0, mlm_logits, cls_logits
        else:
            cls_loss = self.loss_func(cls_logits, clslabels)
            all_loss = mask_loss+cls_loss
            return all_loss, mlm_logits, cls_logits


class UniMCLitModel(pl.LightningModule):

    @staticmethod
    def add_model_specific_args(parent_args):
        parser = parent_args.add_argument_group('BaseModel')

        parser.add_argument('--learning_rate', default=1e-5, type=float)
        parser.add_argument('--weight_decay', default=0.1, type=float)
        parser.add_argument('--warmup', default=0.01, type=float)
        parser.add_argument('--num_labels', default=2, type=int)

        return parent_args

    def __init__(self, args, yes_token, num_data=100):
        super().__init__()
        self.args = args
        self.num_data = num_data
        self.model = UniMCModel(self.args.pretrained_model_path, yes_token)

    def setup(self, stage) -> None:
        if stage == 'fit':
            num_gpus = self.trainer.gpus if self.trainer.gpus is not None else 0
            self.total_step = int(self.trainer.max_epochs * self.num_data /
                                  (max(1, num_gpus) * self.trainer.accumulate_grad_batches))
            print('Total training step:', self.total_step)

    def training_step(self, batch, batch_idx):
        loss, logits, cls_logits = self.model(**batch)
        cls_acc = self.comput_metrix(
            cls_logits, batch['clslabels'], batch['mlmlabels_mask'])
        self.log('train_loss', loss)
        self.log('train_acc', cls_acc)
        return loss

    def validation_step(self, batch, batch_idx):
        loss, logits, cls_logits = self.model(**batch)
        cls_acc = self.comput_metrix(
            cls_logits, batch['clslabels'], batch['mlmlabels_mask'])
        self.log('val_loss', loss)
        self.log('val_acc', cls_acc)

    def configure_optimizers(self):

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        paras = list(
            filter(lambda p: p[1].requires_grad, self.named_parameters()))
        paras = [{
            'params':
            [p for n, p in paras if not any(nd in n for nd in no_decay)],
            'weight_decay': self.args.weight_decay
        }, {
            'params': [p for n, p in paras if any(nd in n for nd in no_decay)],
            'weight_decay': 0.0
        }]
        optimizer = torch.optim.AdamW(paras, lr=self.args.learning_rate)
        scheduler = get_linear_schedule_with_warmup(
            optimizer, int(self.total_step * self.args.warmup),
            self.total_step)

        return [{
            'optimizer': optimizer,
            'lr_scheduler': {
                'scheduler': scheduler,
                'interval': 'step',
                'frequency': 1
            }
        }]

    def comput_metrix(self, logits, labels, mlmlabels_mask):
        logits = torch.nn.functional.softmax(logits, dim=-1)
        logits = torch.argmax(logits, dim=-1)
        y_pred = logits.view(size=(-1,))
        y_true = labels.view(size=(-1,))
        corr = torch.eq(y_pred, y_true).float()
        return torch.sum(corr.float())/labels.size(0)


class TaskModelCheckpoint:
    @staticmethod
    def add_argparse_args(parent_args):
        parser = parent_args.add_argument_group('BaseModel')

        parser.add_argument('--monitor', default='val_acc', type=str)
        parser.add_argument('--mode', default='max', type=str)
        parser.add_argument('--dirpath', default='./log/', type=str)
        parser.add_argument(
            '--filename', default='model-{epoch:02d}-{val_acc:.4f}', type=str)
        parser.add_argument('--save_top_k', default=3, type=float)
        parser.add_argument('--every_n_epochs', default=1, type=float)
        parser.add_argument('--every_n_train_steps', default=100, type=float)
        parser.add_argument('--save_weights_only', default=True, type=bool)
        return parent_args

    def __init__(self, args):
        self.callbacks = ModelCheckpoint(monitor=args.monitor,
                                         save_top_k=args.save_top_k,
                                         mode=args.mode,
                                         save_last=True,
                                         every_n_train_steps=args.every_n_train_steps,
                                         save_weights_only=args.save_weights_only,
                                         dirpath=args.dirpath,
                                         filename=args.filename)


class UniMCPredict:
    def __init__(self, yes_token, no_token, model, tokenizer, args):
        self.tokenizer = tokenizer
        self.args = args
        self.data_model = UniMCDataModel(
            [], [], yes_token, no_token, tokenizer, args)
        self.model = model

    def predict(self, batch_data):
        batch = [self.data_model.train_data.encode(
            sample) for sample in batch_data]
        batch = self.data_model.collate_fn(batch)
        batch = {k: v.to(self.model.device) for k, v in batch.items()}
        _, _, logits = self.model.model(**batch)
        soft_logits = torch.nn.functional.softmax(logits, dim=-1)
        logits = torch.argmax(soft_logits, dim=-1).detach().cpu().numpy()

        soft_logits = soft_logits.detach().cpu().numpy()
        clslabels_mask = batch['clslabels_mask'].detach(
        ).cpu().numpy().tolist()
        clslabels = batch['clslabels'].detach().cpu().numpy().tolist()
        for i, v in enumerate(batch_data):
            label_idx = [idx for idx, v in enumerate(
                clslabels_mask[i]) if v == 0.]
            label = label_idx.index(logits[i])
            answer = batch_data[i]['choice'][label]
            score = {}
            for c in range(len(batch_data[i]['choice'])):
                score[batch_data[i]['choice'][c]] = float(
                    soft_logits[i][label_idx[c]])

            batch_data[i]['label_ori'] = copy.deepcopy(batch_data[i]['label'])
            batch_data[i]['label'] = label
            batch_data[i]['answer'] = answer
            batch_data[i]['score'] = score

        return batch_data


class UniMCPipelines:
    @staticmethod
    def pipelines_args(parent_args):
        total_parser = parent_args.add_argument_group("pipelines args")
        total_parser.add_argument(
            '--pretrained_model_path', default='', type=str)
        total_parser.add_argument('--load_checkpoints_path',
                                  default='', type=str)
        total_parser.add_argument('--train', action='store_true')
        total_parser.add_argument('--language',
                                  default='chinese', type=str)

        total_parser = UniMCDataModel.add_data_specific_args(total_parser)
        total_parser = TaskModelCheckpoint.add_argparse_args(total_parser)
        total_parser = UniMCLitModel.add_model_specific_args(total_parser)
        total_parser = pl.Trainer.add_argparse_args(parent_args)
        return parent_args

    def __init__(self, args):
        self.args = args
        self.checkpoint_callback = TaskModelCheckpoint(args).callbacks
        self.logger = loggers.TensorBoardLogger(save_dir=args.default_root_dir)
        self.trainer = pl.Trainer.from_argparse_args(args,
                                                     logger=self.logger,
                                                     callbacks=[self.checkpoint_callback])
        self.config = AutoConfig.from_pretrained(args.pretrained_model_path)
        if self.config.model_type == 'albert':
            self.tokenizer = AlbertTokenizer.from_pretrained(
                args.pretrained_model_path)
        else:
            if args.language == 'chinese':
                self.tokenizer = BertTokenizer.from_pretrained(
                    args.pretrained_model_path)
            else:
                self.tokenizer = AutoTokenizer.from_pretrained(
                    args.pretrained_model_path, is_split_into_words=True, add_prefix_space=True)

        if args.language == 'chinese':
            self.yes_token = self.tokenizer.encode('是')[1]
            self.no_token = self.tokenizer.encode('非')[1]
        else:
            self.yes_token = self.tokenizer.encode('yes')[1]
            self.no_token = self.tokenizer.encode('no')[1]

        if args.load_checkpoints_path != '':
            self.model = UniMCLitModel.load_from_checkpoint(
                args.load_checkpoints_path, args=args, yes_token=self.yes_token)
            print('load model from: ', args.load_checkpoints_path)
        else:
            self.model = UniMCLitModel(args, yes_token=self.yes_token)

    def fit(self, train_data, dev_data, process=True):
        if process:
            train_data = self.preprocess(train_data)
            dev_data = self.preprocess(dev_data)
        data_model = UniMCDataModel(
            train_data, dev_data, self.yes_token, self.no_token, self.tokenizer, self.args)
        self.model.num_data = len(train_data)
        self.trainer.fit(self.model, data_model)

    def predict(self, test_data, cuda=True, process=True):
        if process:
            test_data = self.preprocess(test_data)

        result = []
        start = 0
        if cuda:
            self.model = self.model.cuda()
        self.model.model.eval()
        predict_model = UniMCPredict(
            self.yes_token, self.no_token, self.model, self.tokenizer, self.args)
        while start < len(test_data):
            batch_data = test_data[start:start+self.args.batchsize]
            start += self.args.batchsize
            batch_result = predict_model.predict(batch_data)
            result.extend(batch_result)
        if process:
            result = self.postprocess(result)
        return result

    def preprocess(self, data):

        for i, line in enumerate(data):
            if 'task_type' in line.keys() and line['task_type'] == '语义匹配':
                data[i]['choice'] = ['不能理解为:'+data[i]
                                     ['textb'], '可以理解为:'+data[i]['textb']]
                # data[i]['question']='怎么理解这段话?'
                data[i]['textb'] = ''

            if 'task_type' in line.keys() and line['task_type'] == '自然语言推理':
                data[i]['choice'] = ['不能推断出:'+data[i]['textb'],
                                     '很难推断出:'+data[i]['textb'], '可以推断出:'+data[i]['textb']]
                # data[i]['question']='根据这段话'
                data[i]['textb'] = ''

        return data

    def postprocess(self, data):
        for i, line in enumerate(data):
            if 'task_type' in line.keys() and line['task_type'] == '语义匹配':
                data[i]['textb'] = data[i]['choice'][0].replace('不能理解为:', '')
                data[i]['choice'] = ['不相似', '相似']
                ns = {}
                for k, v in data[i]['score'].items():
                    if '不能' in k:
                        k = '不相似'
                    if '可以' in k:
                        k = '相似'
                    ns[k] = v
                data[i]['score'] = ns
                data[i]['answer'] = data[i]['choice'][data[i]['label']]

            if 'task_type' in line.keys() and line['task_type'] == '自然语言推理':
                data[i]['textb'] = data[i]['choice'][0].replace('不能推断出:', '')
                data[i]['choice'] = ['矛盾', '自然', '蕴含']
                ns = {}
                for k, v in data[i]['score'].items():
                    if '不能' in k:
                        k = '矛盾'
                    if '很难' in k:
                        k = '自然'
                    if '可以' in k:
                        k = '蕴含'
                    ns[k] = v
                data[i]['score'] = ns
                data[i]['answer'] = data[i]['choice'][data[i]['label']]

        return data


def load_data(data_path):
    with open(data_path, 'r', encoding='utf8') as f:
        lines = f.readlines()
        samples = [json.loads(line) for line in tqdm(lines)]
    return samples


def comp_acc(pred_data, test_data):
    corr = 0
    for i in range(len(pred_data)):
        if pred_data[i]['label'] == test_data[i]['label']:
            corr += 1
    return corr/len(pred_data)


@st.experimental_memo()
def load_model(model_path):
    total_parser = argparse.ArgumentParser("TASK NAME")
    total_parser = UniMCPipelines.pipelines_args(total_parser)
    args = total_parser.parse_args()

    args.pretrained_model_path = model_path
    args.max_length = 512
    args.batchsize = 8
    args.default_root_dir = './'

    model = UniMCPipelines(args)
    return model

def main():

    text_dict={
        'Text classification「文本分类」':"彭于晏不着急,胡歌不着急,那我也不着急",
        'Sentiment「情感分析」':"刚买iphone13 pro 还不到一个月,天天死机最差的一次购物体验",
        'Similarity「语义匹配」':"今天心情不好",
        'NLI 「自然语言推理」':"小明正在上高中",
        'Multiple Choice「多项式阅读理解」':"女:您看这件衣服挺不错的,质量好,价钱也不贵。\n男:再看看吧。",
    }

    question_dict={
        'Text classification「文本分类」':"这是什么类型的新闻?",
        'Sentiment「情感分析」':"",
        'Similarity「语义匹配」':"",
        'NLI 「自然语言推理」':"",
        'Multiple Choice「多项式阅读理解」':"这个男的是什么意思?",
    }

    choice_dict={
        'Text classification「文本分类」':"故事;文化;娱乐;体育;财经;房产;汽车;教育;科技",
        'Sentiment「情感分析」':"这是一条好评;这是一条差评",
        'Similarity「语义匹配」':"可以理解为:我很不开心;不能理解为:我很不开心",
        'NLI 「自然语言推理」':"可以推断出:小明是一个初中生;不能推断出:小明是一个初中生;很难推断出:小明是一个初中生",
        'Multiple Choice「多项式阅读理解」':"不想要这件;衣服挺好的;衣服质量不好",
    }
    
    text_dict_en={
        'Text classification「文本分类」':"Henkel AG & Company KGaA operates worldwide with leading brands and technologies in three business areas: Laundry & Home Care Beauty Care and Adhesive Technologies. Henkel is the name behind some of America’s favorite brands.",
        'Sentiment「情感分析」':"a gorgeous , high-spirited musical from india that exquisitely blends music , dance , song , and high drama . ",
        'Similarity「语义匹配」':"Ricky Clemons ' brief , troubled Missouri basketball career is over .",
        'NLI 「自然语言推理」':"That was then, and then's gone. It's now now. I don't mean I 've done a sudden transformation.",
        'Multiple Choice「多项式阅读理解」':"A huge crowd is in the stands in an arena. A man throws a javelin. Photographers take pictures in the background. several men",
    }

    question_dict_en={
        'Text classification「文本分类」':"",
        'Sentiment「情感分析」':"",
        'Similarity「语义匹配」':"",
        'NLI 「自然语言推理」':"",
        'Multiple Choice「多项式阅读理解」':"",
    }

    choice_dict_en={
        'Text classification「文本分类」':"Company;Educational Institution;Artist;Athlete;Office Holder",
        'Sentiment「情感分析」':"it's great;it's terrible",
        'Similarity「语义匹配」':"That can be interpreted as  Missouri kicked Ricky Clemons off its team , ending his troubled career there .;That cannot be interpreted as  Missouri kicked Ricky Clemons off its team , ending his troubled career there .",
        'NLI 「自然语言推理」':"we can infer that she has done a sudden transformation;we can not infer that she has done a sudden transformation;it is diffcult for us to infer that she has done a sudden transformation",
        'Multiple Choice「多项式阅读理解」':"are water boarding in a river.;are shown throwing balls.;challenge the man to jump onto the rope.;run to where the javelin lands.",
    }
    
    

    st.subheader("UniMC Zero-shot 体验")
    
    st.sidebar.header("Configuration「参数配置」")
    sbform = st.sidebar.form("固定参数设置")
    language = sbform.selectbox('Select a language「选择语言」', ['中文「Chinese」', 'English「英文」'])
    sbform.form_submit_button("Submit configuration「提交配置」")
    
    if '中文' in language:
        model = load_model('IDEA-CCNL/Erlangshen-UniMC-RoBERTa-110M-Chinese')
    else:
        model = load_model('IDEA-CCNL/Erlangshen-UniMC-Albert-235M-English')
        
    st.markdown("""
            UniMC 核心思想是将自然语言理解任务转化为 multiple choice 任务,其通过控制位置编码和attention mask来让模型可以直接复用 MaskLM head 的参数。这使得 UniMC 仅仅使用 multiple choice 数据集训练就可以超越千亿参数模型在zero-shot场景下。在中文数据集中,UniMC 同样超越了其他模型,获得了FewCLUE和ZeroCLUE两个榜单的第一。
            
            The core idea of UniMC is to convert the natural language understanding task into a multiple choice task, which allows the model to directly reuse the parameters of the MaskLM head by controlling the position encoding and attention mask. This enables UniMC to surpass 100 billion parameter models in zero-shot scenarios just by training with multiple choice datasets. In the Chinese dataset, UniMC also surpassed other models and won the first place in both FewCLUE and ZeroCLUE.
            """)
            
    st.info("Please input the following information to experiencing UniMC「请输入以下信息开始体验 UniMC...」")
    model_type = st.selectbox('Select task type「选择任务类型」',['Text classification「文本分类」','Sentiment「情感分析」','Similarity「语义匹配」','NLI 「自然语言推理」','Multiple Choice「多项式阅读理解」'])
    form = st.form("参数设置")
    if '中文' in language:
        sentences = form.text_area("Please input the context「请输入句子」", text_dict[model_type])
        question = form.text_input("Please input the question「请输入问题(不输入问题也可以)」", question_dict[model_type])
        choice = form.text_input("Please input the label「输入标签(以中文;分割)」", choice_dict[model_type])
    else:
        sentences = form.text_area("Please input the context「请输入句子」", text_dict_en[model_type])
        question = form.text_input("Please input the question「请输入问题(不输入问题也可以)」", question_dict_en[model_type])
        choice = form.text_input("Please input the label(split by ‘;’)「输入标签(以英文;分割)」", choice_dict_en[model_type])
    
    form.form_submit_button("Submit「点击一下,开始预测!」")
    
    if '中文' in language:
        choice = choice.split(';')
    else:
        choice = choice.split(';')

    data = [{"texta": sentences,
            "textb": "",
            "question": question,
            "choice": choice,
            "answer": "", "label": 0,
            "id": 0}]


    start=time.time()
    is_cuda= True if torch.cuda.is_available() else False
    result = model.predict(data, cuda=is_cuda)
    st.success(f"Prediction is successful, consumes {str(time.time()-start)} seconds")
    st.json(result[0])




if __name__ == "__main__":
    main()