Spaces:
Runtime error
Runtime error
File size: 33,554 Bytes
9bb46b0 6d11d05 9bb46b0 dcb9476 9bb46b0 6d84157 9bb46b0 6d11d05 9bb46b0 dcb4f85 9bb46b0 c7e6de8 9bb46b0 dcb9476 9bb46b0 dcb9476 6d11d05 dcb9476 6d11d05 dcb9476 6d11d05 dcb9476 9bb46b0 dcb9476 6d11d05 dcb9476 6d11d05 dcb9476 6d11d05 dcb9476 6d11d05 f9cf421 dcb4f85 6d11d05 b5c067b 6d11d05 b5c067b 6d11d05 b5c067b f9cf421 b5c067b dcb9476 b5c067b 9bb46b0 6d11d05 f9cf421 6d11d05 9bb46b0 3fa8111 9bb46b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
# coding=utf-8
# Copyright 2021 The IDEA Authors. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from logging import basicConfig
import torch
from torch import nn
import json
from tqdm import tqdm
import os
import numpy as np
from transformers import BertTokenizer, AutoTokenizer
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import loggers
from torch.utils.data import Dataset, DataLoader
from transformers.optimization import get_linear_schedule_with_warmup
from transformers import BertForMaskedLM, AlbertTokenizer
from transformers import AutoConfig
from transformers import MegatronBertForMaskedLM
from modeling_deberta_v2 import DebertaV2ForMaskedLM
from modeling_albert import AlbertForMaskedLM
import argparse
import copy
import streamlit as st
import time
# os.environ["CUDA_VISIBLE_DEVICES"] = '6'
class UniMCDataset(Dataset):
def __init__(self, data, yes_token, no_token, tokenizer, args, used_mask=True):
super().__init__()
self.tokenizer = tokenizer
self.max_length = args.max_length
self.num_labels = args.num_labels
self.used_mask = used_mask
self.data = data
self.args = args
self.yes_token = yes_token
self.no_token = no_token
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.encode(self.data[index], self.used_mask)
def get_token_type(self, sep_idx, max_length):
token_type_ids = np.zeros(shape=(max_length,))
for i in range(len(sep_idx)-1):
if i % 2 == 0:
ty = np.ones(shape=(sep_idx[i+1]-sep_idx[i],))
else:
ty = np.zeros(shape=(sep_idx[i+1]-sep_idx[i],))
token_type_ids[sep_idx[i]:sep_idx[i+1]] = ty
return token_type_ids
def get_position_ids(self, label_idx, max_length, question_len):
question_position_ids = np.arange(question_len)
label_position_ids = np.arange(question_len, label_idx[-1])
for i in range(len(label_idx)-1):
label_position_ids[label_idx[i]-question_len:label_idx[i+1]-question_len] = np.arange(
question_len, question_len+label_idx[i+1]-label_idx[i])
max_len_label = max(label_position_ids)
text_position_ids = np.arange(
max_len_label+1, max_length+max_len_label+1-label_idx[-1])
position_ids = list(question_position_ids) + \
list(label_position_ids)+list(text_position_ids)
if max_length <= 512:
return position_ids[:max_length]
else:
for i in range(512, max_length):
if position_ids[i] > 511:
position_ids[i] = 511
return position_ids[:max_length]
def get_att_mask(self, attention_mask, label_idx, question_len):
max_length = len(attention_mask)
attention_mask = np.array(attention_mask)
attention_mask = np.tile(attention_mask[None, :], (max_length, 1))
zeros = np.zeros(
shape=(label_idx[-1]-question_len, label_idx[-1]-question_len))
attention_mask[question_len:label_idx[-1],
question_len:label_idx[-1]] = zeros
for i in range(len(label_idx)-1):
label_token_length = label_idx[i+1]-label_idx[i]
if label_token_length <= 0:
print('label_idx', label_idx)
print('question_len', question_len)
continue
ones = np.ones(shape=(label_token_length, label_token_length))
attention_mask[label_idx[i]:label_idx[i+1],
label_idx[i]:label_idx[i+1]] = ones
return attention_mask
def random_masking(self, token_ids, maks_rate, mask_start_idx, max_length, mask_id, tokenizer):
rands = np.random.random(len(token_ids))
source, target = [], []
for i, (r, t) in enumerate(zip(rands, token_ids)):
if i < mask_start_idx:
source.append(t)
target.append(-100)
continue
if r < maks_rate * 0.8:
source.append(mask_id)
target.append(t)
elif r < maks_rate * 0.9:
source.append(t)
target.append(t)
elif r < maks_rate:
source.append(np.random.choice(tokenizer.vocab_size - 1) + 1)
target.append(t)
else:
source.append(t)
target.append(-100)
while len(source) < max_length:
source.append(0)
target.append(-100)
return source[:max_length], target[:max_length]
def encode(self, item, used_mask=False):
while len(self.tokenizer.encode('[MASK]'.join(item['choice']))) > self.max_length-32:
item['choice'] = [c[:int(len(c)/2)] for c in item['choice']]
if 'textb' in item.keys() and item['textb'] != '':
if 'question' in item.keys() and item['question'] != '':
texta = '[MASK]' + '[MASK]'.join(item['choice']) + '[SEP]' + \
item['question'] + '[SEP]' + \
item['texta']+'[SEP]'+item['textb']
else:
texta = '[MASK]' + '[MASK]'.join(item['choice']) + '[SEP]' + \
item['texta']+'[SEP]'+item['textb']
else:
if 'question' in item.keys() and item['question'] != '':
texta = '[MASK]' + '[MASK]'.join(item['choice']) + '[SEP]' + \
item['question'] + '[SEP]' + item['texta']
else:
texta = '[MASK]' + '[MASK]'.join(item['choice']) + \
'[SEP]' + item['texta']
encode_dict = self.tokenizer.encode_plus(texta,
max_length=self.max_length,
padding='max_length',
truncation='longest_first')
encode_sent = encode_dict['input_ids']
token_type_ids = encode_dict['token_type_ids']
attention_mask = encode_dict['attention_mask']
sample_max_length = sum(encode_dict['attention_mask'])
if 'label' not in item.keys():
item['label'] = 0
item['answer'] = ''
question_len = 1
label_idx = [question_len]
for choice in item['choice']:
cur_mask_idx = label_idx[-1] + \
len(self.tokenizer.encode(choice, add_special_tokens=False))+1
label_idx.append(cur_mask_idx)
token_type_ids = [0]*question_len+[1] * \
(label_idx[-1]-label_idx[0]+1)+[0]*self.max_length
token_type_ids = token_type_ids[:self.max_length]
attention_mask = self.get_att_mask(
attention_mask, label_idx, question_len)
position_ids = self.get_position_ids(
label_idx, self.max_length, question_len)
clslabels_mask = np.zeros(shape=(len(encode_sent),))
clslabels_mask[label_idx[:-1]] = 10000
clslabels_mask = clslabels_mask-10000
mlmlabels_mask = np.zeros(shape=(len(encode_sent),))
mlmlabels_mask[label_idx[0]] = 1
used_mask = False
if used_mask:
mask_rate = 0.1*np.random.choice(4, p=[0.3, 0.3, 0.25, 0.15])
source, target = self.random_masking(token_ids=encode_sent, maks_rate=mask_rate,
mask_start_idx=label_idx[-1], max_length=self.max_length,
mask_id=self.tokenizer.mask_token_id, tokenizer=self.tokenizer)
else:
source, target = encode_sent[:], encode_sent[:]
source = np.array(source)
target = np.array(target)
source[label_idx[:-1]] = self.tokenizer.mask_token_id
target[label_idx[:-1]] = self.no_token
target[label_idx[item['label']]] = self.yes_token
input_ids = source[:sample_max_length]
token_type_ids = token_type_ids[:sample_max_length]
attention_mask = attention_mask[:sample_max_length, :sample_max_length]
position_ids = position_ids[:sample_max_length]
mlmlabels = target[:sample_max_length]
clslabels = label_idx[item['label']]
clslabels_mask = clslabels_mask[:sample_max_length]
mlmlabels_mask = mlmlabels_mask[:sample_max_length]
return {
"input_ids": torch.tensor(input_ids).long(),
"token_type_ids": torch.tensor(token_type_ids).long(),
"attention_mask": torch.tensor(attention_mask).float(),
"position_ids": torch.tensor(position_ids).long(),
"mlmlabels": torch.tensor(mlmlabels).long(),
"clslabels": torch.tensor(clslabels).long(),
"clslabels_mask": torch.tensor(clslabels_mask).float(),
"mlmlabels_mask": torch.tensor(mlmlabels_mask).float(),
}
class UniMCDataModel(pl.LightningDataModule):
@staticmethod
def add_data_specific_args(parent_args):
parser = parent_args.add_argument_group('TASK NAME DataModel')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--batchsize', default=16, type=int)
parser.add_argument('--max_length', default=512, type=int)
return parent_args
def __init__(self, train_data, val_data, yes_token, no_token, tokenizer, args):
super().__init__()
self.batchsize = args.batchsize
self.train_data = UniMCDataset(
train_data, yes_token, no_token, tokenizer, args, True)
self.valid_data = UniMCDataset(
val_data, yes_token, no_token, tokenizer, args, False)
def train_dataloader(self):
return DataLoader(self.train_data, shuffle=True, collate_fn=self.collate_fn, batch_size=self.batchsize, pin_memory=False)
def val_dataloader(self):
return DataLoader(self.valid_data, shuffle=False, collate_fn=self.collate_fn, batch_size=self.batchsize, pin_memory=False)
def collate_fn(self, batch):
'''
Aggregate a batch data.
batch = [ins1_dict, ins2_dict, ..., insN_dict]
batch_data = {'sentence':[ins1_sentence, ins2_sentence...], 'input_ids':[ins1_input_ids, ins2_input_ids...], ...}
'''
batch_data = {}
for key in batch[0]:
batch_data[key] = [example[key] for example in batch]
batch_data['input_ids'] = nn.utils.rnn.pad_sequence(batch_data['input_ids'],
batch_first=True,
padding_value=0)
batch_data['clslabels_mask'] = nn.utils.rnn.pad_sequence(batch_data['clslabels_mask'],
batch_first=True,
padding_value=-10000)
batch_size, batch_max_length = batch_data['input_ids'].shape
for k, v in batch_data.items():
if k == 'input_ids' or k == 'clslabels_mask':
continue
if k == 'clslabels':
batch_data[k] = torch.tensor(v).long()
continue
if k != 'attention_mask':
batch_data[k] = nn.utils.rnn.pad_sequence(v,
batch_first=True,
padding_value=0)
else:
attention_mask = torch.zeros(
(batch_size, batch_max_length, batch_max_length))
for i, att in enumerate(v):
sample_length, _ = att.shape
attention_mask[i, :sample_length, :sample_length] = att
batch_data[k] = attention_mask
return batch_data
class UniMCModel(nn.Module):
def __init__(self, pre_train_dir, yes_token):
super().__init__()
self.config = AutoConfig.from_pretrained(pre_train_dir)
if self.config.model_type == 'megatron-bert':
self.bert = MegatronBertForMaskedLM.from_pretrained(pre_train_dir)
elif self.config.model_type == 'deberta-v2':
self.bert = DebertaV2ForMaskedLM.from_pretrained(pre_train_dir)
elif self.config.model_type == 'albert':
self.bert = AlbertForMaskedLM.from_pretrained(pre_train_dir)
else:
self.bert = BertForMaskedLM.from_pretrained(pre_train_dir)
self.loss_func = torch.nn.CrossEntropyLoss()
self.yes_token = yes_token
def forward(self, input_ids, attention_mask, token_type_ids, position_ids=None, mlmlabels=None, clslabels=None, clslabels_mask=None, mlmlabels_mask=None):
batch_size, seq_len = input_ids.shape
outputs = self.bert(input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
labels=mlmlabels) # (bsz, seq, dim)
mask_loss = outputs.loss
mlm_logits = outputs.logits
cls_logits = mlm_logits[:, :,
self.yes_token].view(-1, seq_len)+clslabels_mask
if mlmlabels == None:
return 0, mlm_logits, cls_logits
else:
cls_loss = self.loss_func(cls_logits, clslabels)
all_loss = mask_loss+cls_loss
return all_loss, mlm_logits, cls_logits
class UniMCLitModel(pl.LightningModule):
@staticmethod
def add_model_specific_args(parent_args):
parser = parent_args.add_argument_group('BaseModel')
parser.add_argument('--learning_rate', default=1e-5, type=float)
parser.add_argument('--weight_decay', default=0.1, type=float)
parser.add_argument('--warmup', default=0.01, type=float)
parser.add_argument('--num_labels', default=2, type=int)
return parent_args
def __init__(self, args, yes_token, num_data=100):
super().__init__()
self.args = args
self.num_data = num_data
self.model = UniMCModel(self.args.pretrained_model_path, yes_token)
def setup(self, stage) -> None:
if stage == 'fit':
num_gpus = self.trainer.gpus if self.trainer.gpus is not None else 0
self.total_step = int(self.trainer.max_epochs * self.num_data /
(max(1, num_gpus) * self.trainer.accumulate_grad_batches))
print('Total training step:', self.total_step)
def training_step(self, batch, batch_idx):
loss, logits, cls_logits = self.model(**batch)
cls_acc = self.comput_metrix(
cls_logits, batch['clslabels'], batch['mlmlabels_mask'])
self.log('train_loss', loss)
self.log('train_acc', cls_acc)
return loss
def validation_step(self, batch, batch_idx):
loss, logits, cls_logits = self.model(**batch)
cls_acc = self.comput_metrix(
cls_logits, batch['clslabels'], batch['mlmlabels_mask'])
self.log('val_loss', loss)
self.log('val_acc', cls_acc)
def configure_optimizers(self):
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
paras = list(
filter(lambda p: p[1].requires_grad, self.named_parameters()))
paras = [{
'params':
[p for n, p in paras if not any(nd in n for nd in no_decay)],
'weight_decay': self.args.weight_decay
}, {
'params': [p for n, p in paras if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}]
optimizer = torch.optim.AdamW(paras, lr=self.args.learning_rate)
scheduler = get_linear_schedule_with_warmup(
optimizer, int(self.total_step * self.args.warmup),
self.total_step)
return [{
'optimizer': optimizer,
'lr_scheduler': {
'scheduler': scheduler,
'interval': 'step',
'frequency': 1
}
}]
def comput_metrix(self, logits, labels, mlmlabels_mask):
logits = torch.nn.functional.softmax(logits, dim=-1)
logits = torch.argmax(logits, dim=-1)
y_pred = logits.view(size=(-1,))
y_true = labels.view(size=(-1,))
corr = torch.eq(y_pred, y_true).float()
return torch.sum(corr.float())/labels.size(0)
class TaskModelCheckpoint:
@staticmethod
def add_argparse_args(parent_args):
parser = parent_args.add_argument_group('BaseModel')
parser.add_argument('--monitor', default='val_acc', type=str)
parser.add_argument('--mode', default='max', type=str)
parser.add_argument('--dirpath', default='./log/', type=str)
parser.add_argument(
'--filename', default='model-{epoch:02d}-{val_acc:.4f}', type=str)
parser.add_argument('--save_top_k', default=3, type=float)
parser.add_argument('--every_n_epochs', default=1, type=float)
parser.add_argument('--every_n_train_steps', default=100, type=float)
parser.add_argument('--save_weights_only', default=True, type=bool)
return parent_args
def __init__(self, args):
self.callbacks = ModelCheckpoint(monitor=args.monitor,
save_top_k=args.save_top_k,
mode=args.mode,
save_last=True,
every_n_train_steps=args.every_n_train_steps,
save_weights_only=args.save_weights_only,
dirpath=args.dirpath,
filename=args.filename)
class UniMCPredict:
def __init__(self, yes_token, no_token, model, tokenizer, args):
self.tokenizer = tokenizer
self.args = args
self.data_model = UniMCDataModel(
[], [], yes_token, no_token, tokenizer, args)
self.model = model
def predict(self, batch_data):
batch = [self.data_model.train_data.encode(
sample) for sample in batch_data]
batch = self.data_model.collate_fn(batch)
batch = {k: v.to(self.model.device) for k, v in batch.items()}
_, _, logits = self.model.model(**batch)
soft_logits = torch.nn.functional.softmax(logits, dim=-1)
logits = torch.argmax(soft_logits, dim=-1).detach().cpu().numpy()
soft_logits = soft_logits.detach().cpu().numpy()
clslabels_mask = batch['clslabels_mask'].detach(
).cpu().numpy().tolist()
clslabels = batch['clslabels'].detach().cpu().numpy().tolist()
for i, v in enumerate(batch_data):
label_idx = [idx for idx, v in enumerate(
clslabels_mask[i]) if v == 0.]
label = label_idx.index(logits[i])
answer = batch_data[i]['choice'][label]
score = {}
for c in range(len(batch_data[i]['choice'])):
score[batch_data[i]['choice'][c]] = float(
soft_logits[i][label_idx[c]])
batch_data[i]['label_ori'] = copy.deepcopy(batch_data[i]['label'])
batch_data[i]['label'] = label
batch_data[i]['answer'] = answer
batch_data[i]['score'] = score
return batch_data
class UniMCPipelines:
@staticmethod
def pipelines_args(parent_args):
total_parser = parent_args.add_argument_group("pipelines args")
total_parser.add_argument(
'--pretrained_model_path', default='', type=str)
total_parser.add_argument('--load_checkpoints_path',
default='', type=str)
total_parser.add_argument('--train', action='store_true')
total_parser.add_argument('--language',
default='chinese', type=str)
total_parser = UniMCDataModel.add_data_specific_args(total_parser)
total_parser = TaskModelCheckpoint.add_argparse_args(total_parser)
total_parser = UniMCLitModel.add_model_specific_args(total_parser)
total_parser = pl.Trainer.add_argparse_args(parent_args)
return parent_args
def __init__(self, args):
self.args = args
self.checkpoint_callback = TaskModelCheckpoint(args).callbacks
self.logger = loggers.TensorBoardLogger(save_dir=args.default_root_dir)
self.trainer = pl.Trainer.from_argparse_args(args,
logger=self.logger,
callbacks=[self.checkpoint_callback])
self.config = AutoConfig.from_pretrained(args.pretrained_model_path)
if self.config.model_type == 'albert':
self.tokenizer = AlbertTokenizer.from_pretrained(
args.pretrained_model_path)
else:
if args.language == 'chinese':
self.tokenizer = BertTokenizer.from_pretrained(
args.pretrained_model_path)
else:
self.tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_path, is_split_into_words=True, add_prefix_space=True)
if args.language == 'chinese':
self.yes_token = self.tokenizer.encode('是')[1]
self.no_token = self.tokenizer.encode('非')[1]
else:
self.yes_token = self.tokenizer.encode('yes')[1]
self.no_token = self.tokenizer.encode('no')[1]
if args.load_checkpoints_path != '':
self.model = UniMCLitModel.load_from_checkpoint(
args.load_checkpoints_path, args=args, yes_token=self.yes_token)
print('load model from: ', args.load_checkpoints_path)
else:
self.model = UniMCLitModel(args, yes_token=self.yes_token)
def fit(self, train_data, dev_data, process=True):
if process:
train_data = self.preprocess(train_data)
dev_data = self.preprocess(dev_data)
data_model = UniMCDataModel(
train_data, dev_data, self.yes_token, self.no_token, self.tokenizer, self.args)
self.model.num_data = len(train_data)
self.trainer.fit(self.model, data_model)
def predict(self, test_data, cuda=True, process=True):
if process:
test_data = self.preprocess(test_data)
result = []
start = 0
if cuda:
self.model = self.model.cuda()
self.model.model.eval()
predict_model = UniMCPredict(
self.yes_token, self.no_token, self.model, self.tokenizer, self.args)
while start < len(test_data):
batch_data = test_data[start:start+self.args.batchsize]
start += self.args.batchsize
batch_result = predict_model.predict(batch_data)
result.extend(batch_result)
if process:
result = self.postprocess(result)
return result
def preprocess(self, data):
for i, line in enumerate(data):
if 'task_type' in line.keys() and line['task_type'] == '语义匹配':
data[i]['choice'] = ['不能理解为:'+data[i]
['textb'], '可以理解为:'+data[i]['textb']]
# data[i]['question']='怎么理解这段话?'
data[i]['textb'] = ''
if 'task_type' in line.keys() and line['task_type'] == '自然语言推理':
data[i]['choice'] = ['不能推断出:'+data[i]['textb'],
'很难推断出:'+data[i]['textb'], '可以推断出:'+data[i]['textb']]
# data[i]['question']='根据这段话'
data[i]['textb'] = ''
return data
def postprocess(self, data):
for i, line in enumerate(data):
if 'task_type' in line.keys() and line['task_type'] == '语义匹配':
data[i]['textb'] = data[i]['choice'][0].replace('不能理解为:', '')
data[i]['choice'] = ['不相似', '相似']
ns = {}
for k, v in data[i]['score'].items():
if '不能' in k:
k = '不相似'
if '可以' in k:
k = '相似'
ns[k] = v
data[i]['score'] = ns
data[i]['answer'] = data[i]['choice'][data[i]['label']]
if 'task_type' in line.keys() and line['task_type'] == '自然语言推理':
data[i]['textb'] = data[i]['choice'][0].replace('不能推断出:', '')
data[i]['choice'] = ['矛盾', '自然', '蕴含']
ns = {}
for k, v in data[i]['score'].items():
if '不能' in k:
k = '矛盾'
if '很难' in k:
k = '自然'
if '可以' in k:
k = '蕴含'
ns[k] = v
data[i]['score'] = ns
data[i]['answer'] = data[i]['choice'][data[i]['label']]
return data
def load_data(data_path):
with open(data_path, 'r', encoding='utf8') as f:
lines = f.readlines()
samples = [json.loads(line) for line in tqdm(lines)]
return samples
def comp_acc(pred_data, test_data):
corr = 0
for i in range(len(pred_data)):
if pred_data[i]['label'] == test_data[i]['label']:
corr += 1
return corr/len(pred_data)
@st.experimental_memo()
def load_model(model_path):
total_parser = argparse.ArgumentParser("TASK NAME")
total_parser = UniMCPipelines.pipelines_args(total_parser)
args = total_parser.parse_args()
args.pretrained_model_path = model_path
args.max_length = 512
args.batchsize = 8
args.default_root_dir = './'
model = UniMCPipelines(args)
return model
def main():
text_dict={
'Text classification「文本分类」':"彭于晏不着急,胡歌不着急,那我也不着急",
'Sentiment「情感分析」':"刚买iphone13 pro 还不到一个月,天天死机最差的一次购物体验",
'Similarity「语义匹配」':"今天心情不好",
'NLI 「自然语言推理」':"小明正在上高中",
'Multiple Choice「多项式阅读理解」':"女:您看这件衣服挺不错的,质量好,价钱也不贵。\n男:再看看吧。",
}
question_dict={
'Text classification「文本分类」':"这是什么类型的新闻?",
'Sentiment「情感分析」':"",
'Similarity「语义匹配」':"",
'NLI 「自然语言推理」':"",
'Multiple Choice「多项式阅读理解」':"这个男的是什么意思?",
}
choice_dict={
'Text classification「文本分类」':"故事;文化;娱乐;体育;财经;房产;汽车;教育;科技",
'Sentiment「情感分析」':"这是一条好评;这是一条差评",
'Similarity「语义匹配」':"可以理解为:我很不开心;不能理解为:我很不开心",
'NLI 「自然语言推理」':"可以推断出:小明是一个初中生;不能推断出:小明是一个初中生;很难推断出:小明是一个初中生",
'Multiple Choice「多项式阅读理解」':"不想要这件;衣服挺好的;衣服质量不好",
}
text_dict_en={
'Text classification「文本分类」':"Henkel AG & Company KGaA operates worldwide with leading brands and technologies in three business areas: Laundry & Home Care Beauty Care and Adhesive Technologies. Henkel is the name behind some of America’s favorite brands.",
'Sentiment「情感分析」':"a gorgeous , high-spirited musical from india that exquisitely blends music , dance , song , and high drama . ",
'Similarity「语义匹配」':"Ricky Clemons ' brief , troubled Missouri basketball career is over .",
'NLI 「自然语言推理」':"That was then, and then's gone. It's now now. I don't mean I 've done a sudden transformation.",
'Multiple Choice「多项式阅读理解」':"A huge crowd is in the stands in an arena. A man throws a javelin. Photographers take pictures in the background. several men",
}
question_dict_en={
'Text classification「文本分类」':"",
'Sentiment「情感分析」':"",
'Similarity「语义匹配」':"",
'NLI 「自然语言推理」':"",
'Multiple Choice「多项式阅读理解」':"",
}
choice_dict_en={
'Text classification「文本分类」':"Company;Educational Institution;Artist;Athlete;Office Holder",
'Sentiment「情感分析」':"it's great;it's terrible",
'Similarity「语义匹配」':"That can be interpreted as Missouri kicked Ricky Clemons off its team , ending his troubled career there .;That cannot be interpreted as Missouri kicked Ricky Clemons off its team , ending his troubled career there .",
'NLI 「自然语言推理」':"we can infer that she has done a sudden transformation;we can not infer that she has done a sudden transformation;it is diffcult for us to infer that she has done a sudden transformation",
'Multiple Choice「多项式阅读理解」':"are water boarding in a river.;are shown throwing balls.;challenge the man to jump onto the rope.;run to where the javelin lands.",
}
st.subheader("UniMC Zero-shot 体验")
st.sidebar.header("Configuration「参数配置」")
sbform = st.sidebar.form("固定参数设置")
language = sbform.selectbox('Select a language「选择语言」', ['中文「Chinese」', 'English「英文」'])
sbform.form_submit_button("Submit configuration「提交配置」")
if '中文' in language:
model = load_model('IDEA-CCNL/Erlangshen-UniMC-RoBERTa-110M-Chinese')
else:
model = load_model('IDEA-CCNL/Erlangshen-UniMC-Albert-235M-English')
st.markdown("""
UniMC 核心思想是将自然语言理解任务转化为 multiple choice 任务,其通过控制位置编码和attention mask来让模型可以直接复用 MaskLM head 的参数。这使得 UniMC 仅仅使用 multiple choice 数据集训练就可以超越千亿参数模型在zero-shot场景下。在中文数据集中,UniMC 同样超越了其他模型,获得了FewCLUE和ZeroCLUE两个榜单的第一。
The core idea of UniMC is to convert the natural language understanding task into a multiple choice task, which allows the model to directly reuse the parameters of the MaskLM head by controlling the position encoding and attention mask. This enables UniMC to surpass 100 billion parameter models in zero-shot scenarios just by training with multiple choice datasets. In the Chinese dataset, UniMC also surpassed other models and won the first place in both FewCLUE and ZeroCLUE.
""")
st.info("Please input the following information to experiencing UniMC「请输入以下信息开始体验 UniMC...」")
model_type = st.selectbox('Select task type「选择任务类型」',['Text classification「文本分类」','Sentiment「情感分析」','Similarity「语义匹配」','NLI 「自然语言推理」','Multiple Choice「多项式阅读理解」'])
form = st.form("参数设置")
if '中文' in language:
sentences = form.text_area("Please input the context「请输入句子」", text_dict[model_type])
question = form.text_input("Please input the question「请输入问题(不输入问题也可以)」", question_dict[model_type])
choice = form.text_input("Please input the label「输入标签(以中文;分割)」", choice_dict[model_type])
else:
sentences = form.text_area("Please input the context「请输入句子」", text_dict_en[model_type])
question = form.text_input("Please input the question「请输入问题(不输入问题也可以)」", question_dict_en[model_type])
choice = form.text_input("Please input the label(split by ‘;’)「输入标签(以英文;分割)」", choice_dict_en[model_type])
form.form_submit_button("Submit「点击一下,开始预测!」")
if '中文' in language:
choice = choice.split(';')
else:
choice = choice.split(';')
data = [{"texta": sentences,
"textb": "",
"question": question,
"choice": choice,
"answer": "", "label": 0,
"id": 0}]
start=time.time()
is_cuda= True if torch.cuda.is_available() else False
result = model.predict(data, cuda=is_cuda)
st.success(f"Prediction is successful, consumes {str(time.time()-start)} seconds")
st.json(result[0])
if __name__ == "__main__":
main()
|