import gradio as gr from diffusers import StableDiffusionPipeline # from PIL import Image device="cuda" model_id = "IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1" # pipe_img2img = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, unet=unet).to(device) pipe_text2img = StableDiffusionPipeline.from_pretrained(model_id).to(device) def resize(w_val,l_val,img): img = Image.open(img) img = img.resize((w_val,l_val), Image.Resampling.LANCZOS) return img def infer(prompt, guide, steps, width, height): image_list = pipe_text2img([prompt], guidance_scale=guide, num_inference_steps=steps, width=width, height=height) images = [] for i, image in enumerate(image_list["sample"]): images.append(image) return image gr.Interface(fn=infer, inputs= [ # gr.Image(source="upload", type="filepath", label="原始图像"), gr.Textbox(label = '提示词(prompt)'), gr.Slider(2, 15, value = 7, label = '文本引导强度(guidance scale)'), gr.Slider(10, 30, value = 20, step = 1, label = '迭代次数(inference steps)'), gr.Slider(256, 768, value = 512, step = 64, label = '宽度(width)'), gr.Slider(256, 768, value = 512, step = 64, label = '高度(height)'), ],outputs='image').queue(concurrency_count=10).launch()