import gradio as gr from PIL import Image import torch from diffusers import ( StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline, ) device="cuda" model_id = "IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1" pipe_text2img = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device) pipe_img2img = StableDiffusionImg2ImgPipeline(**pipe_text2img.components).to(device) # pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(model_id).to(device) # work # pipe_inpaint = StableDiffusionInpaintPipeline(**pipe_text2img.components) # not work # def infer_text2img(prompt, guide, steps, width, height): # output = pipe_text2img(prompt, width=width, height=height, guidance_scale=guide, num_inference_steps=steps,) # image = output.images[0] # return image def infer_text2img(prompt, guide, steps, width, height, image_in, strength): if image_in is not None: init_image = image_in.convert("RGB").resize((width, height)) output = pipe_img2img(prompt, init_image=init_image, strength=strength, width=width, height=height, guidance_scale=guide, num_inference_steps=steps) else: output = pipe_text2img(prompt, width=width, height=height, guidance_scale=guide, num_inference_steps=steps,) image = output.images[0] return image def infer_inpaint(prompt, guide, steps, width, height, image_in): init_image = image_in["image"].convert("RGB").resize((width, height)) mask = image_in["mask"].convert("RGB").resize((width, height)) output = pipe_inpaint(prompt, \ init_image=init_image, mask_image=mask, \ width=width, height=height, \ guidance_scale=7.5, num_inference_steps=20) image = output.images[0] return image with gr.Blocks() as demo: examples = [ ["飞流直下三千尺, 疑是银河落九天, 瀑布, 插画"], ["东临碣石, 以观沧海, 波涛汹涌, 插画"], ["孤帆远影碧空尽,惟见长江天际流,油画"], ["女孩背影, 日落, 唯美插画"], ] with gr.Row(): with gr.Column(scale=1, ): image_out = gr.Image(label = '输出(output)') with gr.Column(scale=1, ): image_in = gr.Image(source='upload', elem_id="image_upload", type="pil", label="参考图(非必须)(ref)") prompt = gr.Textbox(label = '提示词(prompt)') submit_btn = gr.Button("生成图像(Generate)") with gr.Row(scale=0.5 ): guide = gr.Slider(2, 15, value = 7, step = 0.1, label = '文本引导强度(guidance scale)') steps = gr.Slider(10, 30, value = 20, step = 1, label = '迭代次数(inference steps)') width = gr.Slider(384, 640, value = 512, step = 64, label = '宽度(width)') height = gr.Slider(384, 640, value = 512, step = 64, label = '高度(height)') strength = gr.Slider(0, 1.0, value = 0.8, step = 0.02, label = '参考图改变程度(strength)') ex = gr.Examples(examples, fn=infer_text2img, inputs=[prompt, guide, steps, width, height], outputs=image_out) # with gr.Column(scale=1, ): # image_in = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload") # inpaint_prompt = gr.Textbox(label = '提示词(prompt)') # inpaint_btn = gr.Button("图像编辑(Inpaint)") # img2img_prompt = gr.Textbox(label = '提示词(prompt)') # img2img_btn = gr.Button("图像编辑(Inpaint)") submit_btn.click(fn = infer_text2img, inputs = [prompt, guide, steps, width, height, image_in, strength], outputs = image_out) # inpaint_btn.click(fn = infer_inpaint, inputs = [inpaint_prompt, width, height, image_in], outputs = image_out) # img2img_btn.click(fn = infer_img2img, inputs = [img2img_prompt, width, height, image_in], outputs = image_out) demo.queue(concurrency_count=1, max_size=8).launch()