File size: 13,557 Bytes
f146523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f49b138
f146523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import random
import numpy as np
from PIL import Image
import base64
from io import BytesIO

import torch
import torchvision.transforms.functional as F
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
import gradio as gr

device = "cpu"   # Linux & Windows
weight_type = torch.float32  # torch.float16 works as well, but pictures seem to be a bit worse

controlnet = ControlNetModel.from_pretrained(
    "IDKiro/sdxs-512-dreamshaper-sketch", torch_dtype=weight_type
).to(device)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "IDKiro/sdxs-512-dreamshaper", controlnet=controlnet, torch_dtype=weight_type
)
pipe.to(device)

style_list = [
    {
        "name": "No Style",
        "prompt": "{prompt}",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
    },
    {
        "name": "Manga",
        "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
    },
]

styles = {k["name"]: k["prompt"] for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "No Style"
MAX_SEED = np.iinfo(np.int32).max


def pil_image_to_data_url(img, format="PNG"):
    buffered = BytesIO()
    img.save(buffered, format=format)
    img_str = base64.b64encode(buffered.getvalue()).decode()
    return f"data:image/{format.lower()};base64,{img_str}"


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def run(
    image, 
    prompt, 
    prompt_template, 
    style_name, 
    controlnet_conditioning_scale,
    device_type="CPU",
    param_dtype='torch.float16',
):
    if device_type == "CPU":
        device = "cpu" 
        param_dtype = 'torch.float32'
    else:
        device = "cuda"
    
    pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32)

    print(f"prompt: {prompt}")
    print("sketch updated")
    if image is None:
        ones = Image.new("L", (512, 512), 255)
        temp_url = pil_image_to_data_url(ones)
        return ones, gr.update(link=temp_url), gr.update(link=temp_url)
    prompt = prompt_template.replace("{prompt}", prompt)
    control_image = image.convert("RGB")
    control_image = Image.fromarray(255 - np.array(control_image))

    output_pil = pipe(
        prompt=prompt,
        image=control_image,
        width=512,
        height=512,
        guidance_scale=0.0,
        num_inference_steps=1,
        num_images_per_prompt=1,
        output_type="pil",
        controlnet_conditioning_scale=controlnet_conditioning_scale,
    ).images[0]

    input_sketch_url = pil_image_to_data_url(control_image)
    output_image_url = pil_image_to_data_url(output_pil)
    return (
        output_pil,
        gr.update(link=input_sketch_url),
        gr.update(link=output_image_url),
    )


def update_canvas(use_line, use_eraser):
    if use_eraser:
        _color = "#ffffff"
        brush_size = 20
    if use_line:
        _color = "#000000"
        brush_size = 8
    return gr.update(brush_radius=brush_size, brush_color=_color, interactive=True)


def upload_sketch(file):
    _img = Image.open(file.name)
    _img = _img.convert("L")
    return gr.update(value=_img, source="upload", interactive=True)


scripts = """
async () => {
    globalThis.theSketchDownloadFunction = () => {
        console.log("test")
        var link = document.createElement("a");
        dataUrl = document.getElementById('download_sketch').href
        link.setAttribute("href", dataUrl)
        link.setAttribute("download", "sketch.png")
        document.body.appendChild(link); // Required for Firefox
        link.click();
        document.body.removeChild(link); // Clean up
      
        // also call the output download function
        theOutputDownloadFunction();
      return false
    }

    globalThis.theOutputDownloadFunction = () => {
        console.log("test output download function")
        var link = document.createElement("a");
        dataUrl = document.getElementById('download_output').href
        link.setAttribute("href", dataUrl);
        link.setAttribute("download", "output.png");
        document.body.appendChild(link); // Required for Firefox
        link.click();
        document.body.removeChild(link); // Clean up
      return false
    }

    globalThis.UNDO_SKETCH_FUNCTION = () => {
        console.log("undo sketch function")
        var button_undo = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(1)');
        // Create a new 'click' event
        var event = new MouseEvent('click', {
            'view': window,
            'bubbles': true,
            'cancelable': true
        });
        button_undo.dispatchEvent(event);
    }

    globalThis.DELETE_SKETCH_FUNCTION = () => {
        console.log("delete sketch function")
        var button_del = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(2)');
        // Create a new 'click' event
        var event = new MouseEvent('click', {
            'view': window,
            'bubbles': true,
            'cancelable': true
        });
        button_del.dispatchEvent(event);
    }

    globalThis.togglePencil = () => {
        el_pencil = document.getElementById('my-toggle-pencil');
        el_pencil.classList.toggle('clicked');
        // simulate a click on the gradio button
        btn_gradio = document.querySelector("#cb-line > label > input");
        var event = new MouseEvent('click', {
            'view': window,
            'bubbles': true,
            'cancelable': true
        });
        btn_gradio.dispatchEvent(event);
        if (el_pencil.classList.contains('clicked')) {
            document.getElementById('my-toggle-eraser').classList.remove('clicked');
            document.getElementById('my-div-pencil').style.backgroundColor = "gray";
            document.getElementById('my-div-eraser').style.backgroundColor = "white";
        }
        else {
            document.getElementById('my-toggle-eraser').classList.add('clicked');
            document.getElementById('my-div-pencil').style.backgroundColor = "white";
            document.getElementById('my-div-eraser').style.backgroundColor = "gray";
        }
        
    }

    globalThis.toggleEraser = () => {
        element = document.getElementById('my-toggle-eraser');
        element.classList.toggle('clicked');
        // simulate a click on the gradio button
        btn_gradio = document.querySelector("#cb-eraser > label > input");
        var event = new MouseEvent('click', {
            'view': window,
            'bubbles': true,
            'cancelable': true
        });
        btn_gradio.dispatchEvent(event);
        if (element.classList.contains('clicked')) {
            document.getElementById('my-toggle-pencil').classList.remove('clicked');
            document.getElementById('my-div-pencil').style.backgroundColor = "white";
            document.getElementById('my-div-eraser').style.backgroundColor = "gray";
        }
        else {
            document.getElementById('my-toggle-pencil').classList.add('clicked');
            document.getElementById('my-div-pencil').style.backgroundColor = "gray";
            document.getElementById('my-div-eraser').style.backgroundColor = "white";
        }
    }
}
"""

with gr.Blocks(css="style.css") as demo:
    gr.Markdown("# SDXS-512-DreamShaper-Sketch (only CPU now)")
    # these are hidden buttons that are used to trigger the canvas changes
    line = gr.Checkbox(label="line", value=False, elem_id="cb-line")
    eraser = gr.Checkbox(label="eraser", value=False, elem_id="cb-eraser")
    with gr.Row(elem_id="main_row"):
        with gr.Column(elem_id="column_input"):
            gr.Markdown("## INPUT", elem_id="input_header")
            image = gr.Image(
                source="canvas", tool="color-sketch", type="pil", image_mode="L",
                invert_colors=True, shape=(512, 512), brush_radius=8, height=440, width=440,
                brush_color="#000000", interactive=True, show_download_button=True, elem_id="input_image", show_label=False)
            download_sketch = gr.Button("Download sketch", scale=1, elem_id="download_sketch")
            
            gr.HTML("""
            <div class="button-row">
                <div id="my-div-pencil" class="pad2"> <button id="my-toggle-pencil" onclick="return togglePencil(this)"></button> </div>
                <div id="my-div-eraser" class="pad2"> <button id="my-toggle-eraser" onclick="return toggleEraser(this)"></button> </div>
                <div class="pad2"> <button id="my-button-undo" onclick="return UNDO_SKETCH_FUNCTION(this)"></button> </div>
                <div class="pad2"> <button id="my-button-clear" onclick="return DELETE_SKETCH_FUNCTION(this)"></button> </div>
                <div class="pad2"> <button href="TODO" download="image" id="my-button-down" onclick='return theSketchDownloadFunction()'></button> </div>
            </div>
            """)
            # gr.Markdown("## Prompt", elem_id="tools_header")
            prompt = gr.Textbox(label="Prompt", value="", show_label=True)
            with gr.Row():
                style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, scale=1)
                prompt_temp = gr.Textbox(label="Prompt Style Template", value=styles[DEFAULT_STYLE_NAME], scale=2, max_lines=1)
            
            controlnet_conditioning_scale = gr.Slider(label="Control Strength", minimum=0, maximum=1, step=0.01, value=0.8)

                 
            device_choices = ['GPU','CPU']
            device_type = gr.Radio(device_choices, label='Device',  
                                        value=device_choices[1],
                                        interactive=False,
                                        info='No funding to provide GPU-based demos now. Please choose CPU!')
            
            dtype_choices = ['torch.float16','torch.float32']
            param_dtype = gr.Radio(dtype_choices,label='torch.weight_type',  
                                        value=dtype_choices[0],
                                        interactive=True,
                                        info='To save GPU memory, use torch.float16. For better quality, use torch.float32.')
                

        with gr.Column(elem_id="column_process", min_width=50, scale=0.4):
            gr.Markdown("## SDXS-Sketch", elem_id="description")
            run_button = gr.Button("Run", min_width=50)

        with gr.Column(elem_id="column_output"):
            gr.Markdown("## OUTPUT", elem_id="output_header")
            result = gr.Image(label="Result", height=440, width=440, elem_id="output_image", show_label=False, show_download_button=True)
            download_output = gr.Button("Download output", elem_id="download_output")
            gr.Markdown("### Instructions")
            gr.Markdown("**1**. Enter a text prompt (e.g. cat)")
            gr.Markdown("**2**. Start sketching")
            gr.Markdown("**3**. Change the image style using a style template")
            gr.Markdown("**4**. Adjust the effect of sketch guidance using the slider")

    
    eraser.change(fn=lambda x: gr.update(value=not x), inputs=[eraser], outputs=[line]).then(update_canvas, [line, eraser], [image])
    line.change(fn=lambda x: gr.update(value=not x), inputs=[line], outputs=[eraser]).then(update_canvas, [line, eraser], [image])

    demo.load(None,None,None,_js=scripts)
    inputs = [image, prompt, prompt_temp, style, controlnet_conditioning_scale, device_type, param_dtype]
    outputs = [result, download_sketch, download_output]
    prompt.submit(fn=run, inputs=inputs, outputs=outputs)
    style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_temp]).then(
        fn=run, inputs=inputs, outputs=outputs,)
    run_button.click(fn=run, inputs=inputs, outputs=outputs)
    image.change(run, inputs=inputs, outputs=outputs,)

if __name__ == "__main__":
    demo.queue().launch(debug=True)