import random import numpy as np from PIL import Image import base64 from io import BytesIO import torch import torchvision.transforms.functional as F from diffusers import ControlNetModel, StableDiffusionControlNetPipeline import gradio as gr device = "cuda" weight_type = torch.float16 controlnet = ControlNetModel.from_pretrained( "IDKiro/sdxs-512-dreamshaper-sketch", torch_dtype=weight_type ).to(device) pipe = StableDiffusionControlNetPipeline.from_pretrained( "IDKiro/sdxs-512-dreamshaper", controlnet=controlnet, torch_dtype=weight_type ) pipe.to(device) style_list = [ { "name": "No Style", "prompt": "{prompt}", }, { "name": "Cinematic", "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", }, { "name": "3D Model", "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", }, { "name": "Anime", "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", }, { "name": "Digital Art", "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", }, { "name": "Photographic", "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", }, { "name": "Pixel art", "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", }, { "name": "Fantasy art", "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", }, { "name": "Neonpunk", "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", }, { "name": "Manga", "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", }, ] styles = {k["name"]: k["prompt"] for k in style_list} STYLE_NAMES = list(styles.keys()) DEFAULT_STYLE_NAME = "No Style" MAX_SEED = np.iinfo(np.int32).max def pil_image_to_data_url(img, format="PNG"): buffered = BytesIO() img.save(buffered, format=format) img_str = base64.b64encode(buffered.getvalue()).decode() return f"data:image/{format.lower()};base64,{img_str}" def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def run( image, prompt, prompt_template, style_name, controlnet_conditioning_scale, device_type="GPU", param_dtype='torch.float16', ): if device_type == "CPU": device = "cpu" param_dtype = 'torch.float32' else: device = "cuda" pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32) print(f"prompt: {prompt}") print("sketch updated") if image is None: ones = Image.new("L", (512, 512), 255) temp_url = pil_image_to_data_url(ones) return ones, gr.update(link=temp_url), gr.update(link=temp_url) prompt = prompt_template.replace("{prompt}", prompt) control_image = image.convert("RGB") control_image = Image.fromarray(255 - np.array(control_image)) output_pil = pipe( prompt=prompt, image=control_image, width=512, height=512, guidance_scale=0.0, num_inference_steps=1, num_images_per_prompt=1, output_type="pil", controlnet_conditioning_scale=float(controlnet_conditioning_scale), ).images[0] input_sketch_url = pil_image_to_data_url(control_image) output_image_url = pil_image_to_data_url(output_pil) return ( output_pil, gr.update(link=input_sketch_url), gr.update(link=output_image_url), ) def update_canvas(use_line, use_eraser): if use_eraser: _color = "#ffffff" brush_size = 20 if use_line: _color = "#000000" brush_size = 8 return gr.update(brush_radius=brush_size, brush_color=_color, interactive=True) def upload_sketch(file): _img = Image.open(file.name) _img = _img.convert("L") return gr.update(value=_img, source="upload", interactive=True) scripts = """ async () => { globalThis.theSketchDownloadFunction = () => { console.log("test") var link = document.createElement("a"); dataUrl = document.getElementById('download_sketch').href link.setAttribute("href", dataUrl) link.setAttribute("download", "sketch.png") document.body.appendChild(link); // Required for Firefox link.click(); document.body.removeChild(link); // Clean up // also call the output download function theOutputDownloadFunction(); return false } globalThis.theOutputDownloadFunction = () => { console.log("test output download function") var link = document.createElement("a"); dataUrl = document.getElementById('download_output').href link.setAttribute("href", dataUrl); link.setAttribute("download", "output.png"); document.body.appendChild(link); // Required for Firefox link.click(); document.body.removeChild(link); // Clean up return false } globalThis.UNDO_SKETCH_FUNCTION = () => { console.log("undo sketch function") var button_undo = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(1)'); // Create a new 'click' event var event = new MouseEvent('click', { 'view': window, 'bubbles': true, 'cancelable': true }); button_undo.dispatchEvent(event); } globalThis.DELETE_SKETCH_FUNCTION = () => { console.log("delete sketch function") var button_del = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(2)'); // Create a new 'click' event var event = new MouseEvent('click', { 'view': window, 'bubbles': true, 'cancelable': true }); button_del.dispatchEvent(event); } globalThis.togglePencil = () => { el_pencil = document.getElementById('my-toggle-pencil'); el_pencil.classList.toggle('clicked'); // simulate a click on the gradio button btn_gradio = document.querySelector("#cb-line > label > input"); var event = new MouseEvent('click', { 'view': window, 'bubbles': true, 'cancelable': true }); btn_gradio.dispatchEvent(event); if (el_pencil.classList.contains('clicked')) { document.getElementById('my-toggle-eraser').classList.remove('clicked'); document.getElementById('my-div-pencil').style.backgroundColor = "gray"; document.getElementById('my-div-eraser').style.backgroundColor = "white"; } else { document.getElementById('my-toggle-eraser').classList.add('clicked'); document.getElementById('my-div-pencil').style.backgroundColor = "white"; document.getElementById('my-div-eraser').style.backgroundColor = "gray"; } } globalThis.toggleEraser = () => { element = document.getElementById('my-toggle-eraser'); element.classList.toggle('clicked'); // simulate a click on the gradio button btn_gradio = document.querySelector("#cb-eraser > label > input"); var event = new MouseEvent('click', { 'view': window, 'bubbles': true, 'cancelable': true }); btn_gradio.dispatchEvent(event); if (element.classList.contains('clicked')) { document.getElementById('my-toggle-pencil').classList.remove('clicked'); document.getElementById('my-div-pencil').style.backgroundColor = "white"; document.getElementById('my-div-eraser').style.backgroundColor = "gray"; } else { document.getElementById('my-toggle-pencil').classList.add('clicked'); document.getElementById('my-div-pencil').style.backgroundColor = "gray"; document.getElementById('my-div-eraser').style.backgroundColor = "white"; } } } """ with gr.Blocks(css="style.css") as demo: gr.Markdown("# SDXS-512-DreamShaper-Sketch") gr.Markdown("[SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions](https://arxiv.org/abs/2403.16627) | [GitHub](https://github.com/IDKiro/sdxs)") # these are hidden buttons that are used to trigger the canvas changes line = gr.Checkbox(label="line", value=False, elem_id="cb-line") eraser = gr.Checkbox(label="eraser", value=False, elem_id="cb-eraser") with gr.Row(elem_id="main_row"): with gr.Column(elem_id="column_input"): gr.Markdown("## INPUT", elem_id="input_header") image = gr.Image( source="canvas", tool="color-sketch", type="pil", image_mode="L", invert_colors=True, shape=(512, 512), brush_radius=8, height=440, width=440, brush_color="#000000", interactive=True, show_download_button=True, elem_id="input_image", show_label=False) download_sketch = gr.Button("Download sketch", scale=1, elem_id="download_sketch") gr.HTML("""
""") # gr.Markdown("## Prompt", elem_id="tools_header") prompt = gr.Textbox(label="Prompt", value="", show_label=True) with gr.Row(): style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, scale=1) prompt_temp = gr.Textbox(label="Prompt Style Template", value=styles[DEFAULT_STYLE_NAME], scale=2, max_lines=1) controlnet_conditioning_scale = gr.Slider(label="Control Strength", minimum=0, maximum=1, step=0.01, value=0.8) device_choices = ['GPU','CPU'] device_type = gr.Radio(device_choices, label='Device', value=device_choices[0], interactive=True, info='Many thanks to the community for the GPU!') dtype_choices = ['torch.float16','torch.float32'] param_dtype = gr.Radio(dtype_choices,label='torch.weight_type', value=dtype_choices[0], interactive=True, info='To save GPU memory, use torch.float16. For better quality, use torch.float32.') with gr.Column(elem_id="column_process", min_width=50, scale=0.4): gr.Markdown("## SDXS-Sketch", elem_id="description") run_button = gr.Button("Run", min_width=50) with gr.Column(elem_id="column_output"): gr.Markdown("## OUTPUT", elem_id="output_header") result = gr.Image(label="Result", height=440, width=440, elem_id="output_image", show_label=False, show_download_button=True) download_output = gr.Button("Download output", elem_id="download_output") gr.Markdown("### Instructions") gr.Markdown("**1**. Enter a text prompt (e.g. cat)") gr.Markdown("**2**. Start sketching") gr.Markdown("**3**. Change the image style using a style template") gr.Markdown("**4**. Adjust the effect of sketch guidance using the slider") eraser.change(fn=lambda x: gr.update(value=not x), inputs=[eraser], outputs=[line]).then(update_canvas, [line, eraser], [image]) line.change(fn=lambda x: gr.update(value=not x), inputs=[line], outputs=[eraser]).then(update_canvas, [line, eraser], [image]) demo.load(None,None,None,_js=scripts) inputs = [image, prompt, prompt_temp, style, controlnet_conditioning_scale, device_type, param_dtype] outputs = [result, download_sketch, download_output] prompt.submit(fn=run, inputs=inputs, outputs=outputs) style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_temp]).then( fn=run, inputs=inputs, outputs=outputs,) run_button.click(fn=run, inputs=inputs, outputs=outputs) image.change(run, inputs=inputs, outputs=outputs,) if __name__ == "__main__": demo.queue().launch(debug=True)