|
import os |
|
import cv2 |
|
from PIL import Image |
|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import base64 |
|
import requests |
|
import json |
|
|
|
|
|
def start_tryon(person_img, garment_img, seed, randomize_seed): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
encoded_person_img = cv2.imencode('.jpg', person_img)[1].tobytes() |
|
encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8') |
|
encoded_garment_img = cv2.imencode('.jpg', garment_img)[1].tobytes() |
|
encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8') |
|
|
|
url = "http://" + os.environ['tryon_url'] |
|
token = os.environ['token'] |
|
print(url, token) |
|
headers = {'Content-Type': 'application/json', 'token': token} |
|
data = { |
|
"clothImage": encoded_garment_img, |
|
"humanImage": encoded_person_img, |
|
"seed": seed |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
result_img = cv2.imdecode(np.frombuffer(base64.b64decode(encoded_person_img), np.uint8), cv2.IMREAD_UNCHANGED) |
|
|
|
return result_img, seed |
|
|
|
MAX_SEED = 999999 |
|
|
|
example_path = os.path.join(os.path.dirname(__file__), 'assets') |
|
|
|
garm_list = os.listdir(os.path.join(example_path,"cloth")) |
|
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list] |
|
|
|
human_list = os.listdir(os.path.join(example_path,"human")) |
|
human_list_path = [os.path.join(example_path,"human",human) for human in human_list] |
|
|
|
css=""" |
|
#col-left { |
|
margin: 0 auto; |
|
max-width: 600px; |
|
} |
|
#col-right { |
|
margin: 0 auto; |
|
max-width: 750px; |
|
} |
|
#button { |
|
color: blue; |
|
} |
|
""" |
|
|
|
def load_description(fp): |
|
with open(fp, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
return content |
|
|
|
with gr.Blocks(css=css) as Tryon: |
|
gr.HTML(load_description("assets/title.md")) |
|
with gr.Row(): |
|
with gr.Column(): |
|
imgs = gr.Image(label="Person image", sources='upload', type="numpy") |
|
|
|
example = gr.Examples( |
|
inputs=imgs, |
|
examples_per_page=10, |
|
examples=human_list_path |
|
) |
|
with gr.Column(): |
|
garm_img = gr.Image(label="Garment image", sources='upload', type="numpy") |
|
example = gr.Examples( |
|
inputs=garm_img, |
|
examples_per_page=10, |
|
examples=garm_list_path) |
|
with gr.Column(): |
|
image_out = gr.Image(label="Output", show_share_button=False) |
|
seed_used = gr.Number(label="Seed Used") |
|
try_button = gr.Button(value="Try-on", elem_id="button") |
|
|
|
|
|
with gr.Column(): |
|
with gr.Accordion(label="Advanced Settings", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used], api_name='tryon') |
|
|
|
ip = requests.get('http://ifconfig.me/ip', timeout=1).text.strip() |
|
print("ip address", ip) |
|
Tryon.queue(max_size=10).launch() |
|
|