Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import textwrap | |
import google.generativeai as genai | |
# Function to display formatted Markdown text | |
def to_markdown(text): | |
text = text.replace('•', ' *') | |
return textwrap.indent(text, '> ', predicate=lambda _: True) | |
# Function to generate content using Gemini API | |
def generate_gemini_content(prompt, model_name='gemini-pro-vision', image=None): | |
model = genai.GenerativeModel(model_name) | |
if not image: | |
st.warning("Por favor, agrega una imagen para usar el modelo gemini-pro-vision.") | |
return None | |
response = model.generate_content([prompt, image]) | |
return response | |
# Streamlit app | |
def main(): | |
st.set_page_config(page_title="Laura Chatbot - INIF", page_icon="🤖") | |
# Configurar la API key de Gemini (reemplazar con tu clave de API de Gemini) | |
genai.configure(api_key='AIzaSyA4k6JoFNZsf8L1ixLMMRjEMoBPns5SHZk') | |
st.title("Laura Chatbot - INIF") | |
st.sidebar.title("Configuración de Laura Chatbot") | |
# Configurar la API key de INIF | |
inif_api_key = 'AIzaSyA4k6JoFNZsf8L1ixLMMRjEMoBPns5SHZk' | |
genai.configure(api_key=inif_api_key) | |
# Seleccionar el modelo Gemini | |
select_model = st.sidebar.selectbox("Selecciona el modelo", ["gemini-pro", "gemini-pro-vision"]) | |
# Inicializar la sesión de chat | |
chat = genai.GenerativeModel(select_model).start_chat(history=[]) | |
# Definir función para obtener respuesta del modelo Gemini | |
def get_response(messages): | |
response = chat.send_message(messages, stream=True) | |
return response | |
# Historial del chat | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = [] | |
messages = st.session_state["messages"] | |
# Mostrar mensajes del historial | |
if messages: | |
for message in messages: | |
role, parts = message.values() | |
if role.lower() == "user": | |
st.markdown(f"Tú: {parts[0]}") | |
elif role.lower() == "model": | |
st.markdown(f"Assistant: {to_markdown(parts[0])}") | |
# Entrada del usuario | |
user_input = st.text_area("Tú:") | |
# Agregar contexto del INIF al input del usuario | |
inif_context = ( | |
"I am an informative data analyst chatbot named TERMINATOR, working for the National Institute of Fraud Research and Prevention (INIF), dedicated to fraud prevention and mitigation." | |
" If you have questions related to fraud or prevention, feel free to ask. For inquiries about other topics, I'll redirect you to the fraud prevention context." | |
"\n\nContact Information for INIF:" | |
"\nPhone: +57 317 638 94 71" | |
"\nEmail: atencionalcliente@inif.com.co" | |
"\n\nOur Mission:" | |
"\nTo be the most reliable engine of knowledge, research, and information in Colombia, capable of preventing and combating fraud through synergy between our team and companies." | |
"\n\nOur Vision:" | |
"\nTo lead the construction of a more honest culture, allowing us to progress as a society." | |
) | |
# Concatenar el contexto del INIF al input del usuario | |
user_input_with_context = f"{user_input}\n\n{inif_context}" | |
# Get optional image input if the model selected is 'gemini-pro-vision' | |
image_file = None | |
if select_model == 'gemini-pro-vision': | |
image_file = st.file_uploader("Sube una imagen (si aplica):", type=["jpg", "jpeg", "png"]) | |
# Display image if provided | |
if image_file: | |
st.image(image_file, caption="Imagen subida", use_column_width=True) | |
# Botón para enviar mensaje o generar contenido según el modelo seleccionado | |
if st.button("Enviar / Generar Contenido"): | |
if user_input: | |
messages.append({"role": "user", "parts": [user_input]}) | |
if select_model == 'gemini-pro-vision': | |
# Modelo Gemini Vision Pro seleccionado | |
if not image_file: | |
st.warning("Por favor, proporciona una imagen para el modelo gemini-pro-vision.") | |
else: | |
image = Image.open(image_file) | |
response = generate_gemini_content(user_input_with_context, model_name=select_model, image=image) | |
if response: | |
if response.candidates: | |
parts = response.candidates[0].content.parts | |
generated_text = parts[0].text if parts else "No se generó contenido." | |
st.markdown(f"Assistant: {to_markdown(generated_text)}") | |
messages.append({"role": "model", "parts": [generated_text]}) | |
else: | |
st.warning("No se encontraron candidatos en la respuesta.") | |
else: | |
# Otros modelos Gemini seleccionados | |
response = get_response(user_input_with_context) | |
# Mostrar respuesta del modelo solo una vez | |
res_text = "" | |
for chunk in response: | |
res_text += chunk.text | |
st.markdown(f"Assistant: {to_markdown(res_text)}") | |
messages.append({"role": "model", "parts": [res_text]}) | |
# Actualizar historial de mensajes en la sesión de Streamlit | |
st.session_state["messages"] = messages | |
if __name__ == "__main__": | |
main() |