File size: 1,505 Bytes
6cd135d
bbad36e
ae74a42
bbad36e
 
0d8d12d
ae74a42
6cd135d
0d8d12d
ae74a42
0d8d12d
 
ae74a42
0d8d12d
 
 
ae74a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d8d12d
 
 
ae74a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
os.system('pip install transformers','pip install torch torchvision torchaudio')

import torch
print(torch.__version__)

import streamlit as st

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# Choose your desired free model from the Hugging Face Hub
model_name = "t5-small"  # Replace with your choice (e.g., facebook/bart-base or EleutherAI/gpt-neo-125M)

# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

# From here down is all the StreamLit UI.
st.set_page_config(page_title="LangChain Demo", page_icon=":robot:")
st.header("Hey, I'm your Chat GPT")



if "sessionMessages" not in st.session_state:
     st.session_state.sessionMessages = [
        SystemMessage(content="You are a helpful assistant.")
    ]



def load_answer(question):

    st.session_state.sessionMessages.append(HumanMessage(content=question))

    inputs = tokenizer(question, return_tensors="pt")
    outputs = model.generate(**inputs)
    response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    st.session_state.sessionMessages.append(AIMessage(content=assistant_answer.content))

    return assistant_answer.content


def get_text():
    input_text = st.text_input("You: ", key= input)
    return input_text






user_input=get_text()
submit = st.button('Generate')  

if submit:
    
    response = load_answer(user_input)
    st.subheader("Answer:")

    st.write(response,key= 1)