File size: 1,744 Bytes
05e5bda
 
e76dfb4
05e5bda
 
 
f2f8e53
 
05e5bda
 
 
 
ab2323e
e76dfb4
 
 
 
05e5bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2f8e53
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
import torch
from peft import prepare_model_for_kbit_training
from transformers import AutoTokenizer, AutoModelForCausalLM
model_path = "inception-mbzuai/jais-13b-chat"

prompt_eng = "### Instruction: \n\nComplete the conversation below between [|Human|] and [|AI|]:\n### Input: [|Human|] {Question}\n### Response: [|AI|]"
prompt_ar  = "### Instruction: \n\nΨ£ΩƒΩ…Ω„ Ψ§Ω„Ω…Ψ­Ψ§Ψ―Ψ«Ψ© Ψ£Ψ―Ω†Ψ§Ω‡ Ψ¨ΩŠΩ† [|Human|] و [|AI|]:\n### Input: [|Human|] {Question}\n### Response: [|AI|]"

device = "cuda" if torch.cuda.is_available() else "cpu"

tokenizer = AutoTokenizer.from_pretrained(model_path)
#model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True)
#model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained("inception-mbzuai/jais-13b-chat", load_in_8bit=True, device_map="auto", trust_remote_code=True)
model = prepare_model_for_kbit_training(model)

def get_response(text,tokenizer=tokenizer,model=model):
    input_ids = tokenizer(text, return_tensors="pt").input_ids
    inputs = input_ids.to(device)
    input_len = inputs.shape[-1]
    generate_ids = model.generate(
        inputs,
        top_p=0.9,
        temperature=0.3,
        max_length=2048-input_len,
        min_length=input_len + 4,
        repetition_penalty=1.2,
        do_sample=True,
    )
    response = tokenizer.batch_decode(
        generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
    )[0]
    response = response.split("### Response: [|AI|]")
    return response

def greet():
    ques= input()
    text = prompt_ar.format_map({'Question':ques})
    return get_response(text)