Spaces:
Runtime error
Runtime error
IbrahimHasani
commited on
Commit
•
a29b529
1
Parent(s):
5186ead
Update app.py
Browse files
app.py
CHANGED
@@ -3,19 +3,32 @@ import torch
|
|
3 |
import numpy as np
|
4 |
from transformers import AutoProcessor, AutoModel
|
5 |
from PIL import Image
|
6 |
-
|
7 |
|
8 |
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
|
9 |
CLIP_LEN = 32
|
10 |
|
11 |
-
#
|
12 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
-
print (device)
|
14 |
-
|
15 |
-
# Load model and processor once and move them to the GPU
|
16 |
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
17 |
-
model = AutoModel.from_pretrained(MODEL_NAME)
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def sample_uniform_frame_indices(clip_len, seg_len):
|
21 |
if seg_len < clip_len:
|
@@ -27,12 +40,7 @@ def sample_uniform_frame_indices(clip_len, seg_len):
|
|
27 |
indices = [i * spacing for i in range(clip_len)]
|
28 |
return np.array(indices).astype(np.int64)
|
29 |
|
30 |
-
|
31 |
-
# Use GPU for video decoding if available
|
32 |
-
vr_ctx = cpu(0)
|
33 |
-
vr = VideoReader(file_path, num_threads=1, ctx=vr_ctx)
|
34 |
-
video = vr.get_batch(indices).asnumpy()
|
35 |
-
return video
|
36 |
|
37 |
def concatenate_frames(frames, clip_len):
|
38 |
layout = { 32: (4, 8) }
|
@@ -50,24 +58,18 @@ def concatenate_frames(frames, clip_len):
|
|
50 |
return combined_image
|
51 |
|
52 |
def model_interface(uploaded_video, activity):
|
53 |
-
|
54 |
-
|
|
|
55 |
concatenated_image = concatenate_frames(video, CLIP_LEN)
|
56 |
|
57 |
activities_list = [activity, "other"]
|
58 |
-
|
59 |
-
# Convert list of numpy.ndarrays to a single numpy.ndarray
|
60 |
-
video_array = np.array(video)
|
61 |
-
|
62 |
inputs = processor(
|
63 |
text=activities_list,
|
64 |
-
videos=
|
65 |
return_tensors="pt",
|
66 |
padding=True,
|
67 |
)
|
68 |
-
|
69 |
-
# Move inputs to GPU
|
70 |
-
inputs = {name: tensor.to(device) for name, tensor in inputs.items()}
|
71 |
|
72 |
with torch.no_grad():
|
73 |
outputs = model(**inputs)
|
@@ -80,13 +82,13 @@ def model_interface(uploaded_video, activity):
|
|
80 |
max_prob_index = torch.argmax(probs[0]).item()
|
81 |
for i in range(len(activities_list)):
|
82 |
current_activity = activities_list[i]
|
83 |
-
prob = float(probs[0][i]
|
84 |
-
logit = float(logits_per_video[0][i]
|
85 |
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
|
86 |
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
|
87 |
|
88 |
likely_label = activities_list[max_prob_index]
|
89 |
-
likely_probability = float(probs[0][max_prob_index]
|
90 |
|
91 |
return concatenated_image, results_probs, results_logits, [ likely_label , likely_probability ]
|
92 |
|
|
|
3 |
import numpy as np
|
4 |
from transformers import AutoProcessor, AutoModel
|
5 |
from PIL import Image
|
6 |
+
import cv2
|
7 |
|
8 |
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
|
9 |
CLIP_LEN = 32
|
10 |
|
11 |
+
# Load model and processor once
|
|
|
|
|
|
|
|
|
12 |
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
13 |
+
model = AutoModel.from_pretrained(MODEL_NAME)
|
14 |
+
|
15 |
+
|
16 |
+
def get_video_length(file_path):
|
17 |
+
cap = cv2.VideoCapture(file_path)
|
18 |
+
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
19 |
+
cap.release()
|
20 |
+
return length
|
21 |
+
|
22 |
+
def read_video_opencv(file_path, indices):
|
23 |
+
cap = cv2.VideoCapture(file_path)
|
24 |
+
frames = []
|
25 |
+
for i in indices:
|
26 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
27 |
+
ret, frame = cap.read()
|
28 |
+
if ret:
|
29 |
+
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
30 |
+
cap.release()
|
31 |
+
return frames
|
32 |
|
33 |
def sample_uniform_frame_indices(clip_len, seg_len):
|
34 |
if seg_len < clip_len:
|
|
|
40 |
indices = [i * spacing for i in range(clip_len)]
|
41 |
return np.array(indices).astype(np.int64)
|
42 |
|
43 |
+
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
def concatenate_frames(frames, clip_len):
|
46 |
layout = { 32: (4, 8) }
|
|
|
58 |
return combined_image
|
59 |
|
60 |
def model_interface(uploaded_video, activity):
|
61 |
+
video_length = get_video_length(uploaded_video)
|
62 |
+
indices = sample_uniform_frame_indices(CLIP_LEN, seg_len=video_length)
|
63 |
+
video = read_video_opencv(uploaded_video, indices)
|
64 |
concatenated_image = concatenate_frames(video, CLIP_LEN)
|
65 |
|
66 |
activities_list = [activity, "other"]
|
|
|
|
|
|
|
|
|
67 |
inputs = processor(
|
68 |
text=activities_list,
|
69 |
+
videos=list(video),
|
70 |
return_tensors="pt",
|
71 |
padding=True,
|
72 |
)
|
|
|
|
|
|
|
73 |
|
74 |
with torch.no_grad():
|
75 |
outputs = model(**inputs)
|
|
|
82 |
max_prob_index = torch.argmax(probs[0]).item()
|
83 |
for i in range(len(activities_list)):
|
84 |
current_activity = activities_list[i]
|
85 |
+
prob = float(probs[0][i])
|
86 |
+
logit = float(logits_per_video[0][i])
|
87 |
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
|
88 |
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
|
89 |
|
90 |
likely_label = activities_list[max_prob_index]
|
91 |
+
likely_probability = float(probs[0][max_prob_index]) * 100
|
92 |
|
93 |
return concatenated_image, results_probs, results_logits, [ likely_label , likely_probability ]
|
94 |
|